
****************************************

BANACH CENTER PUBLICATIONS, VOLUME **

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 201*

DUNFORD-PETTIS OPERATORS ON THE SPACE OF
BOCHNER INTEGRABLE FUNCTIONS

MARIAN NOWAK

Faculty of Mathematics, Computer Science and Econometrics

University of Zielona Góra
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Abstract. Let (Ω, Σ, µ) be a finite measure space and let X be a real Banach space. Let LΦ(X)

be the Orlicz-Bochner space defined by a Young function Φ. We study the relationships between

Dunford-Pettis operators T from L1(X) to a Banach space Y and the compactness properties

of the operators T restricted to LΦ(X). In particular, it is shown that if X is a reflexive

Banach space, then a bounded linear operator T : L1(X) → Y is Dunford-Pettis if and only if

T restricted to L∞(X) is (τ(L∞(X), L1(X∗)), ‖ · ‖Y )-compact.

1. Introduction and preliminaries.. Recall that a bounded linear operator T between two

Banach spaces is a Dunford-Pettis operator if T maps weakly convergent sequences onto norm

convergent sequences. J. Bourgain [B, Proposition 1] showed that a bounded linear operator T

from L1 to a Banach space Y is a Dunford-Pettis operator if and only if T restricted to Lp

for some p ∈ (1,∞] is compact. The purpose of this paper is to extend and strengthen this

result for operators defined on the space of Bochner integrable functions L1(X). We study the

relationships between Dunford-Pettis operators T : L1(X) → Y and the compactness properties

of T restricted to Orlicz-Bochner spaces LΦ(X) (see Theorem 2.1, Theorem 2.3 and Corollary

2.5 below).

We denote by σ(L, K) the weak topology on L with respect to the dual pair 〈L, K〉. Let

(L, ξ) and (M, η) be Hausdorff locally convex spaces. Recall that a linear operator S : L → M

is (ξ, η)-compact if there exists a neighbourhood U of 0 for ξ such that S(U) is a relatively

compact set in (M, η). By Bd(L, ξ) we denote the collection of all ξ-bounded sets in L.

Moreover, (L, ξ)∗ stands for the topological dual of (L, ξ).

For terminology and basic properties concerning Banach function spaces we refer to [KA].

Now we recall terminology concerning Orlicz space (see [Lu], [RR] for more details). From now
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we assume that (Ω, Σ, µ) is a finite measure space. By a Young function we mean here a non-zero

convex, left continuous function Φ : [0,∞) → [0,∞] that is vanishing and continuous at 0. We

say that Φ jumps to infinity, if Φ(t) = ∞ for all t ≥ t0 > 0.

The Orlicz space LΦ = {u ∈ L0 :
∫
Ω

Φ(λ|u(ω)|)dµ < ∞ for some λ > 0} can be equipped

with the complete Riesz norm:

‖u‖Φ = inf {λ > 0 :

∫
Ω

Φ(|u(ω)|/λ) dµ ≤ 1}.

Then LΦ is a perfect Banach function space and L∞ ⊂ LΦ ⊂ L1, where the inclusion maps

are continuous. Moreover, the Köthe dual (LΦ)′ of LΦ is equal to the Orlicz space LΦ∗ , where

Φ∗ stands for the Young function complementary to Φ in the sense of Young. The associated

norm ‖·‖0
Φ∗ on LΦ∗ (called the Orlicz norm) can be defined by

‖·‖0
Φ∗ = sup

{∫
Ω

|u(ω)v(ω)| dµ : u ∈ LΦ, ‖u‖Φ ≤ 1

}
.

Note that if limt→∞
Φ(t)

t
= ∞, then LΦ  L1 and

L∞  (LΦ∗)a = EΦ∗ =
{

v ∈ LΦ∗ :

∫
Ω

Φ(λ|v(ω)|) dµ < ∞ for all λ > 0
}

.

In particular, if Φ jumps to infinity, then LΦ = L∞. If limt→∞
Φ(t)

t
< ∞, then LΦ = L1

and LΦ∗ = L∞.

From now on we assume that (X, ‖·‖X) and (Y, ‖·‖Y ) are real Banach spaces and X∗ , Y ∗

denote their Banach duals. By L0(X) we denote the set of µ-equivalence classes of all strongly

Σ-measurable functions f : Ω → X.

For f ∈ L0(X) let f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. Then the space

LΦ(X) = {f ∈ L0(X) : f̃ ∈ LΦ}

provided with the norm ‖f‖LΦ(X) := ‖f̃‖Φ is a Banach space and is usually called an Orlicz-

Bochner space (see [CM], [L], [RR] for more details).

Now we recall terminology and basic results concerning duality of the spaces LΦ(X) (see

[Bu1], [Bu2]). A linear functional F on LΦ(X) is said to be order continuous if F (fα) → 0

whenever f̃α
(o)−→ 0 in LΦ. The set of all order continuous functionals on LΦ(X) will be denoted

by LΦ(X)∼n and called the order continuous dual of LΦ(X). Then LΦ(X)∗ = LΦ(X)∼n if Φ

satisfies the so called ∆2-condition, i.e., lim supt→∞
Φ(2t)
Φ(t)

< ∞. Due to Bukhvalov (see [Bu1],

[Bu2]) if X∗ has the Radon-Nikodym property (in particular, X is reflexive), then LΦ(X)∼n
can be identified with LΦ∗(X∗) throughout the mapping: LΦ∗(X∗) 3 g 7→ Fg ∈ LΦ(X)∼n , where

Fg(f) =

∫
Ω

〈f(ω), g(ω)〉dµ for all f ∈ LΦ(X).

Note that L1(X)∼n = L1(X)∗ = {Fg : g ∈ L∞(X∗)} if X is reflexive.

For a subset H of LΦ(X) let H̃ = {f̃ : f ∈ H}. By BLΦ(X) (resp. BLΦ) we will denote

closed unit ball in (LΦ(X), ‖ · ‖LΦ(X)) (resp. (LΦ, ‖ · ‖Φ)). Then B̃LΦ(X) = BLΦ .

The following characterization of relative σ(LΦ(X), LΦ(X)∼n )-compactness in LΦ(X) will

be of importance (see [N1, Theorem 2.7, Proposition 2.1]).

Proposition 1.1. Assume that X is a reflexive Banach space and Φ is a Young function. Then

for a subset H of LΦ(X) the following statements are equaivalent:

(i) H is relatively σ(LΦ(X), LΦ∗(X∗))-compact.

(ii) H̃ is relatively σ(LΦ, LΦ∗)-compact.
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(iii) The functional pH̃ on LΦ∗ defined by pH̃(v) = supu∈H̃

∫
Ω
|u(ω)v(ω)|dµ is an order

continuous seminorm.

2. Dunford-Pettis operators on L1(X). We study the relationships between Dunford- Pet-

tis operators T : L1(X) → Y and the compactness properties of the operator T restricted to

LΦ(X). Note that a bounded linear operator T : L1(X) → Y is a Dunford-Pettis operator if

and only if T maps relatively weakly compact sets in L1(X) onto relatively norm compact sets

in Y (see [AB, § 19]).

Let iΦ : LΦ(X) → L1(X) stand for the inclusion map.

Theorem 2.1. Let T : L1(X) → Y be a bounded linear operator. Assume that Φ is Young

function and let T ◦ iΦ : LΦ(X) → Y be a (‖ · ‖Φ, ‖ · ‖Y )-compact operator. Then T is a

Dunford-Pettis operator.

Proof. We see that T (BLΦ(X)) is relatively compact in (Y, ‖ · ‖Y ). Let H be a relatively

σ(L1(X), L1(X)∗)-compact subset of L1(X). To show that T (H) is relatively compact in

(Y, ‖ · ‖Y ) it is enough to show in view of [D, p. 5], that for every ε > 0 there exists a relatively

compact subset Kε of (Y, ‖ · ‖Y ) such that

T (H) ⊂ εBY + Kε.

where BY is a closed unite ball in Y . Note that the set H̃ is uniformly integrable in L1 (see

[DU, Theorem 4, p. 104]). For f ∈ L1(X) and λ > 0 let

Af,λ = {ω ∈ Ω : f̃(ω) > λ}.

Then

lim
λ→∞

sup
f∈H

∫
Af,λ

f̃(ω) dµ = lim
λ→∞

sup
f∈H

‖1Af ,λ f ‖L1(X) = 0.

Let ε > 0 be given. Then there exists λε > 0 such that for each f ∈ H we have

‖1Af,λε
f ‖L1(X) ≤

ε

‖T‖ .

Hence for f ∈ H we get

‖T (1Af,λε
f) ‖Y ≤ ‖T‖ · ‖1Af,λε

f ‖L1(X) ≤ ε.

Moreover, 1ΩrAf,λε
(ω)f̃(ω) ≤ λε for ω ∈ Ω, so 1ΩrAf,λε

f ∈ L∞(X) ⊂ LΦ(X). Since

‖h‖LΦ(X) ≤ a‖h‖L∞(X) for some a > 0 and all h ∈ L∞(X), we get

‖1ΩrAf,λε
f ‖LΦ(X) ≤ a λε.

Hence

T (f) = T (1Af ,λεf) + T (1ΩrAf,λε
f) ∈ ε BY + a λε T (BLΦ(X)).

This means that the set T (H) is relatively compact in (Y, ‖ · ‖Y ), as desired.

From now we assume that Φ is a Young function such that limt→∞
Φ(t)

t
= ∞. Let TΦ be

the topology on LΦ(X) generated by the norm ‖ · ‖LΦ(X) on LΦ(X), and let T0 stand for the

complete F -norm ‖ · ‖L0(X)-topology on L0(X) that generates convergence in measure. Then

the mixed topology γ[TΦ, T0

∣∣
LΦ(X)

] (briefly, γΦ) on LΦ(X) is the finest Hausdorff locally convex

topology on LΦ(X) which agrees with T0

∣∣
LΦ(X)

on ‖ · ‖LΦ(X)-bounded subsets of LΦ(X) (see

[W, 2.2.2], [F1, Theorem 3.3]). Moreover, we have (see [F2, Proposition 2.1]):

(2.1) Bd(LΦ(X), γΦ) = Bd(LΦ(X), ‖ · ‖LΦ(X)).
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This means that (LΦ(X), γΦ) is a generalized DF-space (see [Ru, Definition 1.1]).

It is known that a linear operator T : LΦ(X) → Y is (γΦ, ‖ ·‖Y )-continuous if and only if T

is (γΦ, ‖ · ‖Y )-linear, i.e., ‖T (fn)‖Y → 0 whenever ‖fn‖L0(X) → 0 and supn ‖fn‖LΦ(X) < ∞
(see [W, Theorem 2.6.1 (iii)], [F2, Proposition 2.3]).

We shall need the following lemma.

Lemma 2.2. Assume that Φ is a Young function such that limt→∞
Φ(t)

t
= ∞ and X is a

reflexive Banach space. Then iΦ : LΦ(X) → L1(X) is a (‖·‖LΦ(X), σ(L1(X), L1(X)∗))-compact

operator.

Proof. To show that BLΦ(X) is a relatively σ(L1(X), L1(X)∗)-compact subset of L1(X), in

view of Proposition 1.1 it is enough to show that BLΦ is relatively σ(L1, L∞)-compact in L1,

that is, the seminorm on L∞ defined by

pB
LΦ (v) := sup

u∈B
LΦ

∫
Ω

|u(ω)v(ω)| dµ

is order continuous. Indeed, note that pB
LΦ (v) = ‖·‖0

Φ∗ for v ∈ L∞, where L∞  EΦ∗ = (LΦ∗)a.

Thus the proof is complete.

Now we are ready to proof our main result.

Theorem 2.3. Assume that Φ is a Young function such that limt→∞
Φ(t)

t
= ∞ and X is a

reflexive Banach space. Let T : L1(X) → Y be a Dunford-Pettis operator. Then the operator

T ◦ iΦ : LΦ(X) → Y is (γΦ, ‖ · ‖Y )-compact.

Proof. Since X is supposed to be reflexive, in view of [F1, Theorem 3.2] we have

(LΦ(X), γΦ)∗ = {Fg : g ∈ EΦ∗(X∗)}.

First, we shall show that T ◦ iΦ : LΦ(X) → Y is (γΦ, ‖ · ‖Y )-linear. Indeed, let (fn) be

a sequence in LΦ(X) such that ‖fn‖L0(X) → 0 and supn ‖fn‖LΦ(X) < ∞. Then fn → 0

for γΦ (see [F1, Theorem 3.1]), and it follows that fn → 0 for σ(LΦ(X), EΦ∗(X∗)) because

σ(LΦ(X), EΦ∗(X∗)) ⊂ γΦ. Hence fn → 0 for σ(L1(X), L1(X)∗) because σ(L1(X), L1(X)∗) =

σ(L1(X), L∞(X∗)) and LΦ(X) ⊂ L1(X) and L∞(X∗) ⊂ EΦ∗(X∗). Since T is a Dunford-Pettis

operator, we get ‖T (fn)‖Y → 0. This means that T ◦ iΦ is (γLΦ(X), ‖ · ‖Y )-continuous.

By Lemma 2.2 the mapping T ◦ iΦ is (‖ · ‖LΦ(X), ‖ · ‖Y )-compact. Hence, in view of (2.1)

T ◦ iΦ transforms γΦ-bounded sets in LΦ(X) onto relatively ‖ · ‖Y -compact sets in Y . Making

use of [Ru, Theorem 3.1] we conclude that T ◦ iΦ is (γΦ, ‖ · ‖Y )-compact, as desired.

As an application of Theorem 2.1 and Theorem 2.3 we get:

Corollary 2.4. Assume that Φ is a Young function such that limt→∞
Φ(f)

t
= ∞ and X is

a reflexive Banach space. Then for a bounded linear operator T : L1(X) → Y the following

statements are equivalent:

(i) T is a Dunford-Pettis operator.

(ii) T ◦ iΦ : LΦ(X) → Y is (γΦ, ‖ · ‖Y )-compact.

(iii) T ◦ iΦ : LΦ(X) → Y is (‖ · ‖LΦ(X), ‖ · ‖Y )-compact.

In particular, if X is reflexive, then the mixed topology γ∞ on L∞(X) coincides with

the Mackey topology τ(L∞(X), L1(X∗)) (see [N2, Corollary 4.4]). Hence, as a consequence of

Corollary 2.4 we get:
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Corollary 2.5. Assume that X is a reflexive Banach space. Then for a bounded linear operator

T : L1(X) → Y the following statements are equivalent:

(i) T is a Dunford-Pettis operator.

(ii) T ◦ i∞ : L∞(X) → Y is (τ(L∞(X), L1(X∗)), ‖ · ‖Y )-compact.

(iii) T ◦ i∞ : L∞(X) → Y is (‖ · ‖L∞(X), ‖ · ‖Y )-compact.
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