3k >k 3k sk ok ok Sk ok ok sk sk ok sk skok sk sk Sk sk sk sk kok sk Sk sk sk sk sk ok sk sk okok sk skok ok kok

BANACH CENTER PUBLICATIONS, VOLUME **
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 201%*

COMMON EXTENSIONS FOR LINEAR OPERATORS

RODICA-MIHAELA DANET

Technical University of Civil Engineering of Bucharest
Department of Mathematics and Computer Science
124, Lacul Tei Blvd., Bucharest, Romania
FE-mail: rodica.danet@gmail.com

Abstract. The mainly meaning of the common extension for two linear operators is the fol-
lowing: given two vector subspaces G1 and G> in a vector space (respectively an ordered vector
space) E, a Dedekind complete ordered vector space F' and two (positive) linear operators
T, :G1 — F, T> : G2 — F, when does a (positive) linear common extension L of T1, T exist?

Firstly, L will be defined on span (G1 U G2). In other results, formulated in the line of the
Hahn-Banach extension theorem, the common extension L will be defined on the whole space FE,
by requiring the majorization of 71, T> by a (monotone) sublinear operator. Note that our first
Hahn-Banach common extension results were proved by using two results formulated in the line
of the Mazur-Orlicz theorem. Actually, for the first of these last mentioned results, we extend
the name common extension to the case when E is without order structure, instead of G1, G2
there are some arbitrary nonempty sets, instead of T, T there are two arbitrary maps fi, fa,
and, in addition, are given two more maps g1 : Gi1 — E, g2 : G2 — E and a sublinear operator
S : E — F. In this case we ask: When it is possible to obtain a linear operator L : E — F,
dominated by S and related to maps fi, f2, g1, g2 by some inequalities?

To extend positive linear operators between ordered vector spaces, some authors (Z. Lipecki,
R. Cristescu and myself) have used a procedure which includes the introduction of an additional
set and a corresponding map. Inspired by this technique, in this paper we also solve some common
positive extensions problems by using an additional set.

1. Preliminaries. In this paper the terminology, the notation and some mentioned
results are classical for the theory of the ordered vector spaces and linear operators (see,
for example [1], [2] and [11]); X, and X will be real vector spaces, Fy and F will be
ordered vector spaces and, generally, F' will be a Dedekind complete ordered vector space
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2 R.-M. DANET

(that is, every nonempty ordered bounded set in F' has a supremum or, equivalently, an
infimum).

For the mainly meaning of the common extension problem we consider two vector
subspaces (or sets) Gy, G2 in Ey, E = span (G1UGs2) and two linear operators (or
arbitrary maps) T : G; — F, Ts : Go — F and we are interested to give (necessary and)
sufficient conditions for the existence of a (positive) linear operator L : E — F such
that L extends T} and T, that is L (v1) = T1 (v1) and L (v3) = Ts (ve), for all v; € Gy
and vy € G2. Obviously, a necessary condition for this is that the operators 77 and Tb
are consistent (in the terminology introduced in [9]) that is, T} = T» on G; N Gs.

Such results, for the case of linear functionals, appeared in [12] and [9]. The importance
of this problem appears, for example, in [9], [14], [15], [16] and [13].

The primary result in this sense is the following:

THEOREM 1.1. Let Xy and Y be two vector spaces, Gy and Go two vector subspaces of
Xo, X = span (G1UG2) and T : G; — Y, j € {1,2}, two linear operators. Then, the
following are equivalent:

(i) There exists L : X — Y, a common linear extension of Ty, Ts.

(i) If vi + ve = 0, with v1 € G1,v2 € Ga, then Ty (v1) + Ta (v2) = 0.

(iii) Ty = Ty on G1 N Ga.

Note that, for the proof of (i4) = (i), we define L : X — Y by L(vy +v2) =
Ty (v1) + Ty (v2) , for all v; € Gy and vo € Gy and, according to (i4), it follows that L is
well-defined.

For a finite family (7});eq1,... ny of linear operators, Theorem 1.1 becomes:

THEOREM 1.2. Let Xg and Y be two vector spaces, (Gj)je{l,..‘,n} a family of vector
subspaces of Xo and T; : G; =Y, j € {1,...,n} a family of linear operators. Then, the
following are equivalent:

(i) There exists L : span (G1 U ...UG,) = Y a common linear extension of Ty, ..., T,,.

(i) If v +vo+---+v, =0, then Ty (v1) + T2 (vo) +- - -+ T}, (v,) = 0, where v; € Gy,
for each j € {1,...,n}.

(iii) For each two sets Ny, Ny so that Ny N Ny = @ and Ny U Ny = {1,...,n},

Yo Tie(v) = Y Tj(vj) if > v = > v;, where v, € Gy for any k € Ny, and
kEN, JEN kEN: JEN2
v; € G for any j € No.

It is easy to prove that (iii) from Theorem 1.2 is equivalent with the following condi-
tion:

(#i’) Forany k € {2,3,...,n}, Ty = T1+To+ - +Tj—1 on GpNspan (G1 U ... UGk_1),
that is Ty (vg) =T (v1) + Ta (v2) + -+ + T—1 (vg—1) for any vy = vy +v2 + -+ + Vg1,
where v; € G, j € {1,...,k}.

The following result is a version of the Theorem 1.1 in the ordered vector spaces
setting, all the linear operators which appear being positive.

THEOREM 1.3. Let Ey be an ordered vector space and let F be a Dedekind complete
ordered vector space. Let also Gy, G2 be two vector subspaces of Ey and let Ty : G; — F,
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Ty : Go — F be two positive linear operators. Let us consider the following statements,
where we denote E = span (G1 U G3) :

(i) There exists L : E — F, a positive common linear extension of Ty and Ts;

(i) If v1 + v < 0, where v1 € G1,v2 € Ga, then Ty (v1) + Ts (v2) < 0;

(iii) If v1 + va > 0, where vy € Gy,v2 € Ga, then Th (v1) + Ts (v2) > 0;

() If v1 + vg = 0, where v1 € G1,vy € Ga, then Ty (v1) + Ts (v2) = 0;

(’U) Tl = T2 on Gl N GQ.

Then, we have: (i) < (ii) < (i) = (iv) & (v).

The proof of Theorem 1.3 is immediately. Also, the corresponding result which gen-

eralizes this theorem for a family (7) je{1,...n} of positive linear operators can easily be

.

formulated.

2. Common extensions in the line of Mazur-Orlicz and Hahn-Banach theo-
rems. In the following result having as a consequence the Mazur-Orlicz theorem (see
Corollary 2.3 below), we meet another meaning for the common extension problem.
We will consider two nonempty sets A;, As, four maps ¢g; : 41 = X, go : Ay = X
fi: A1 = F, fo: Ay — F and a sublinear operator S : X — F' such that all these maps
satisfy an inequality which imply that f; < .Sog; and fo < S o gs. Then we can extend
simultaneously these inequalities, obtaining the existence of a linear operator L : £ — F
dominated by S and such that f; < Log; and fo < Lo gs.

Actually, this result will be applied to obtain a common extension (for two positive
linear operators) in the mainly meaning considered in this paper and in the line of the
Hahn-Banach theorem.

THEOREM 2.1. Let X be a vector space, F' a Dedekind complete ordered vector space, Ay
and Ay two nonempty arbitrary sets, S : X — F a sublinear operator, and g; : A; — X
and f; : A; = F, j € {1,2}, four maps. Then, the following are equivalent:
(i) There exists L : X — F a linear operator such that
a) L<S on X, and
b) fi< Log; on Ay and fo < Lo gy on As.

(i) The inequality

Z Aifi (a1:) + Z/ijz (azj) < S Z Aig1 (a1i) + ZNJ'QZ (az;) (2.1)
=1 =1 i=1 =

holds for all n, m € N* {a11,...,a1n,} C A1, A1 > 0,..., A, > 0 and {a21,...,a2m} C As,
w1 >0, .0 iy > 0.
Proof. Firstly, we remark that we can suppose that m = n, taking: Ap,41 = ... = A\, =0,
if n < m, respectively pm41 = ... = b, =0, if m < n.

Obviously, (i) = (i7). Indeed, using successively (i) b), the linearity of L from (i) and
(1) a), we obtain:

D Xifi(an) + > _pifa (azj) < ZM‘ (Log)(a)+ > pj(Logs)(az) =

i=1 j=1 j=1
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=L Z Aig1 (a1i) + Zﬂjgz (azj) | <8 Z Aigi (a1:) + Z 1592 (az;)
i=1 =1

i=1 j=1

To prove that (i) implies (i), we use the technique of the auxiliary sublinear operator,
and apply the existence form of the Hahn-Banach theorem (”For every sublinear operator
Sy : X — F there exists a linear operator L; : X — F such that L; < S on X.”). For
every € X, put S (z) the infimum of the set

{S (SC + Z Aig1 (a1q) + ZM!M (a2i)> - Z)\ifl (a14) — Zuifz (021‘)} ;

where the infimum is taken over all the finite subsets {a11,...,a1,} C 41, {a21,...,a2,} C
Ag, {M1,, A0} C Ry, {1, e} € Ry and n € N*. Note that Sp (x) exists because,
using condition (4¢) and the sublinearity of S, we have:

> Xifi(a) + > pifa(azi) < S (Z Xig1 (an) + Y g (a2z‘)> <
i=1 =1 =1 i=1

<Ss (:E + Z Aig1 (a1:) + Zﬂi92 (a2i)> + S (-z).

Hence
—S(-x)< S (m + Y digr(a) + ) g (azi)> =Y Nifi (@) = Y pafa (az:)
i=1 i=1 i=1 i=1
this inequality holding in the Dedekind complete ordered vector space F.
It is straightforward to prove that S is a sublinear operator. Then, using the existence

form of the Hahn-Banach theorem ([11], p.44), there exists a linear operator L : X — F
such that

L(x)<Si(z),zreX (2.2)
Using the definition of S; we remark that
Si(x)<S(x),zeX (2.3)

From (2.2) and (2.3) it results (i)a) that is L (z) < S(z), for all z € X.
Now we prove (i) b), that is, for example, that

fi<Log, on A (2.4)
But, for every a; € A1, we have:
L(=g1(a1)) < 81 (=91 (a1)) < S (=91 (a1) + g1 (a1)) — f1(a1) = —f1 (a1)
and by using the linearity of L, we obtain (2.4). m

REMARK 2.2. We can easily extend Theorem 2.1 for any p sets A4, ..., A, and 2p maps
gi: Ai — X, fz : Al — F‘7 1€ {1,7])} instead of Al, AQ and g1, 92, fl, fg. O

COROLLARY 2.3. (The vectorial form of the Mazur-Orlicz theorem [10]) Let X be a vector
space, F' a Dedekind complete ordered vector space and S : X — F a sublinear operator.
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Let A be an arbitrary nonempty set, and f : A — F and g : A — X two maps. The
following conditions are equivalent:
(i) There exists a linear operator L : E — F with the properties

a) L< S on X, andb) f < Log on A.

(ii) The inequality

Z)\if (ai) <8 (ZMQ(%))
i=1 i=1
holds for all finite subsets {ay,...,an} C A and {A\1,..., A} CR,.
Proof. Put in Theorem 1.2, A1 = A, Ao ={0} C X, g1=9, f1i=f,92=0, f2=0. =
The following result is the version of Theorem 2.1 for ordered vector spaces.

THEOREM 2.4. Let E be an ordered vector space, F' a Dedekind complete ordered vector
space, and K1, Ko two nonempty convex sets, and S : E — F a monotone sublinear
operator. For each i € {1,2}, let P, : K; — E be a convex operator and Q; : K; = F a
concave operator. Then, the following conditions are equivalent:

(i) There exists a positive linear operator L : E — F such that

a) L<S on E, and
b) Q1 < LoP; on K1 and Q2 < Lo Py on Ks.

(ii) The inequality
AQ1 (a1) + pQ2 (az2) < S (APy (a1) + pP (az2)) (25)
holds for all a1 € Ky, as € Ko, A >0 and u > 0.

Proof. Firstly we remark that the inequality (2.5) is equivalent with the inequality (2.1)
from the Theorem 2.1. Indeed, it is obviously that (2.1) implies (2.5), if we put in (2.1)
m=n=2and 4; = K;, g; = P, and f; = Q;, ¢ € {1,2}. To prove the converse, if
11y .-, 1 € K1, @21,y a02n € Ko, A1 > 0,...,0, > 0,1 >0,..., 4y, > 0, we can suppose
that \:= Ay +---+ A, >0and p:=puy + -+ py > 0. Denote a; = % andﬁi:%,for
each i € {1,...,n}. It follows that oy + -+ 4+ o, = 1, f1 + -+ + B, = 1 and hence, using
that Py, P> are convex operators and (01, ()2 are concave operators, we obtain:

P, (Z Oliau) < Zaipl (a13), P (Z 5i02i> < ZBiPz (a2i) ,
i=1 i=1 i=1 i=1

and

@ (Z amu) > Qi (a), Qo <Z ﬁiazz) > 5iQa (az)
i=1 i=1 i=1 i=1

Then, using (2.5) and the condition that S is a monotone operator we have:

Z AiQ1 (a1:) + ZMQ2 (ag;) = )\Z %Ql (a1;) + ,UZ %Qz (agi) =
i—1 i—1 i—1 i—1
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=AY aiQi (an) +p Y BiQs (a2:) < MG (Z Oliau‘) + Q2 <Z ﬂiam) <

i=1 i=1 i=1 i=1

<S8 <>\Pl (Zn: aﬂu) + ple (i 51@1)) <
<8 (A (i o Py (au)) +p (Zn: Bi P> (%i))) .

Moreover, to prove (ii) = (i), we use that any linear operator L : E — F dominated by
a monotone and positively homogeneous operator S : E — F is a positive operator (see,
for example [7], Remark 2.3). m

COROLLARY 2.5. (Mazur-Orlicz theorem for ordered vector spaces, see [7], Theorem
2.4) Let E be an ordered vector space, F' a Dedekind complete ordered vector space and
S : E — F a monotone sublinear operator. Let K be a nonempty conver set, P: K - E
a convex operator, and Q : K — F a concave operator. Then the following conditions are
equivalent:

(i) There exists a positive linear operator L : E — F with the properties:

a) LS onE, andb) Q< LoP on K.
(ii) The inequality Q@ < S o P holds on K.

Now we remember two vectorial forms of the Hahn-Banach extension theorem, for
cases in which the domain space is an arbitrary vector space, respectively an ordered
vector space.

THEOREM 2.6. Let X be a vector space, F' a Dedekind complete ordered vector space,
and S : X — F a sublinear operator. Let G be a vector subspace of X and T : G — F a
linear operator. The following conditions are equivalent:

(i) There exists a linear operator L : X — F with the properties

a) L< S on X, andb) L=T onG.
(i) T < S on G.

THEOREM 2.7. Let E be an ordered vector space, F' a Dedekind complete ordered vector
space and S : E — F a monotone sublinear operator. Let G be a vector subspace of E
and T : G — F a positive linear operator. Then, the following are equivalent:

(i) There exists a positive linear operator L : E — F such that

a) LS onE, andb) L=T on G.
(ii) T <S onG.
Remark that Corollary 2.3 (the Mazur-Orlicz theorem) is a generalization of Theorem
2.6 (the vectorial form of the Hahn-Banach extension theorem).

The following common extension result will be formulated in the line of the Hahn-
Banach extension theorem with a vector space as the domain space (see Theorem 2.6).
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THEOREM 2.8. Let X be a vector space, F' a Dedekind complete ordered vector space,

and S : X — F a sublinear operator. Let G1 and Go be two vector subspaces of X and

Ty : Gy = F, Ty : Gy = F two linear operators. The following conditions are equivalent:
(i) There exists a linear operator L : X — F with the properties:

a) L<S on X, and
b)L:Tl OTZGl, L:T2 OnGQ.

(i) The following inequality holds for all vi € G1 and ve € G,
Tl (’Ul) + T2 (’Ug) S S (’Ul + Ug) . (26)

Proof. Obviously, (i) implies (#¢). To prove the converse we can apply Theorem 2.1 for
A; = G, fi = T; and g; = the inclusion of G; in X, for each ¢ € {1,2}. We obtain a linear
operator L : X — F such that L < S on X and T; < L on G;, for i € {1,2}. Actually,
we have even T; = L on (;, that is L is an extension of T;, because T; < L on G;, and
T; and L are linear. (Indeed, if, for example v; € Gy, we have: Ty (—v1) < L(—wv1) and
hence =T} (v1) < —L (vy). It follows that L (vy) < Ty (v1) < L (v1)). Therefore L is a
common extension of T, T. =

Note that the inequality (2.6) implies that:

1)T1§SOHG1 andTQSSODGQ.
2) T1=T2 OnGlmGg.

Indeed, to prove 2), let v € G; N Gy and put in (2.6) v1 = v and vy = —v. Then
T (v) + Ta (—v) < S(0) = 0 and hence T; (v) < Ty (v); similarly, T3 (v) < T3 (v) and
therefore Ty (v) = Tz (v) .

The following common extension result will be formulated in the line of the Hahn-

Banach extension theorem with an ordered vector space as the domain space (see Theorem
2.7).

THEOREM 2.9. Let E be an ordered vector space, F' a Dedekind complete ordered vector
space and S : E — F a monotone sublinear operator. Let G1 and Go be two wector
subspaces of X and Ty : G1 — F, Ty : Go — F two positive linear operators. Then, the
following are equivalent:

(i) There exists a positive linear operator L : E — F such that

a) L<S on E, and
b)L:Tl OTLGl, L:TQ OTLGQ.

(i) Ty (v1) + Ta (v3) < S (v1 +v2), for all vy € G1 and ve € Ga.
Proof. We apply Theorem 2.4. m
The following result is a consequence of Theorem 2.9.

COROLLARY 2.10. Let E, F, Gy, G2 and Ty, Ty be like in the previous theorem. Then,
the following are equivalent:

(i) There exists L : E — F a positive linear operator such that L = Ty on Gy and
L =1T5 on Gsy.
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(ii) There exists S : E — F a monotone sublinear operator such that
T (Ul) + 15 (112) <S (’Ul + ’02)
for all vi € Gy and vy € Gs.

In the following result, which is a consequence of Corollary 2.10, the condition that
the sublinear operator S is monotone is dropped.

THEOREM 2.11. Let E be an ordered vector space, F' a Dedekind complete ordered vector
space and G1, Go two vector subspaces of E. Let also T} : Gy — F and Ty : Go — F be
two positive linear operators. Then, the following are equivalent:

(i) There exists a positive linear operator L : E — F such that L = Th on G and
L= T2 on GQ.

(ii) There exists S : E — F a sublinear operator such that

v +vy <v=T(v1)+Ta(v2) <S5 (v) (2.7)
where v1 € G1, v € Gy and v € E.

Proof. (i) = (ii). We put S = L and use that L is a positive linear common extension of
Ty and To(v1 +v2 <v = L(v1)+ L (v2) <L(v) =T (v1)+Ts(v2) <S5 (v)). Conversely,
let S : E — F be a sublinear operator satisfying (2.7). We apply the technique of the
auxiliary sublinear operator, defining S; : E — F by the following formula:

S1(v) =inf{S (w) |w € E,w > v}, for each v € E

This infimum exists in F, because the set {S(w) | w € E, w > v} is minorized in
F, by —S (—v). Indeed, we have for vy = vo = 0, and u > 0 : 0 = T7 (0) + T (0) <
S(u)=Swv+u—v)<S(v+u)+S(—v), hence =S (—v) < S (v+u), for all u > 0, or,
equivalently, —S (—v) < S (w), for all w € E, w > v.

Obviously 51 < S on E. In addition the operator S; has the following properties:

1) Sy is sublinear,

2) S is monotone,

3) T (’Ul) + T (1}2) <9 (Ul + UQ) for all v1 € Gy, v2 € Go;

Now, we can apply Corollary 2.10, (i) = (i), for S; instead of S, obtaining a positive
common linear extension of 77 and 1. m

REMARK 2.12. Many results of this paper, including Theorem 2.9, can be easily gener-
alized in the line of the Maharam theorem (1972). O

THEOREM 2.13. (Maharam theorem) Let E be a vector lattice with an order unit e € F

and (Gs)scn a family of subspaces of E such that e € span ( U G5>. Let also F be a
dEA
Dedekind complete ordered vector space and let {Ts : Gs — F | § € A} be a family of

positive linear operators. Then, the following conditions are equivalent:

(i) There exists T : E — F a positive linear extension of the family (T5)sc A (that
is, T (x) =T (z) for all § € A and x € Gs).

(ii) The inequality 0 < Ts (vs) holds for every family (vs)scn € ® ((Gs)), satisfying
0< Z vs, where ® ((Gs)sen) denotes the collection of all families {vs € G5 | 6 € A}

such that vs # 0 for at most finitely many § € A.
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This theorem was originally proved by D. Maharam in [9] (see also [13], Theorem 6.3).

The following result (see [7], Theorem 5.4) is an easy generalization of Theorem 2.13,
because if the ordered vector space E has an order unit ¢ > 0 and G C F is a vector
subspace so that e € G, then G is a majorizing subspace of E.

THEOREM 2.14. Let E be an ordered vector space and let (Gs) 5.5 be a family of subspaces
of E, such that there exists at least one which is majorizing, say Gs,. Let F' be a Dedekind
complete ordered vector space and let {Ts : Gs — F | § € A} be a family of positive linear
operators. Then the following conditions are equivalent:

(i) The family {Ts : Gs — F | 6 € A} has a positive common linear extension
T:E—F.

(ii) The implication ) vs > 0 = > T5(vs) > 0 holds for every family (vs)scn €

dEA SEA
o ((G5)66A) :

REMARK 2.15. If we generalize Corollary 2.10 in the line of the Maharam theorem, we
obtain Theorem 2.14, and hence Theorem 2.13 too, as consequences. To prove this it
suffices to prove that Corollary 2.10 implies the version of Theorem 2.14 for A = {1, 2}.
For this aim it is necessary to prove that (#') = (i) if at least one of the subspaces G,
Ga, say G, is majorizing, where (i) and (i7') are the following statements:

(ii) There exists S a monotone sublinear operator such that

Ty (v1) + 15 (v2) < S (v1 + v2)

for all v1 € Gy and vy € Gs.
(it") If v1 + w2 <0, then Ty (v1) + Ta (v2) < 0 for all vi € Gy and vy € Gs.
Suppose that (ii') is valid. Let us define T : span (G1 U G2) — F by the equality

T (v1 +v2) = T1 (v1) + T (v2)

for all v1 € G1 and vy € Go.

The operator T has the following properties: 1) T is well-defined, according to (ii');
2) T is linear; 3) T is positive.

Because we supposed that G is a majorizing subspace, it follows that the subspace
G = span (G1 U G3) is majorizing, too. Define S : E — F, S(z) = T(z), for all z € E,
(that is S(x) = inf{T(2) | z € G, z > z}). It is known that S is a monotone sublinear
operator and T' < S on E. We have: Ty (v1) + T (v) = T (v1 + v2) < S (v1 + vg) for all
vy € Gy and ve € Go, that is (i) is valid. O

3. Common positive extensions using an additional set. In the following result we
will give a sufficient condition for the existence of a positive linear operator L satisfying
the converse inequalities of Theorem 2.1 (z)b). This condition is a implication between
two inequalities and next we will simplify the form of the left and respectively of the
right member of these inequalities. Note that, instead of majorization of L by a sublinear
operator S we will assume the existence of an additional set M and of two maps h : M —
E and r : M — F, obtaining that Lo h <7 on M.

THEOREM 3.1. Let Ey be an ordered vector space, F' a Dedekind complete ordered vector
space, and let Ay, Ay and M be arbitrary nonempty sets. Let also g; : A; — Ey, f;:
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A = F,je{l,2} and h : M — (Ey)4, r : M — F be arbitrary maps, and E =
span(g1 (A1) U ga(A2) UR(M)) C Ey. Suppose that:

n

Z a; g1 (a1;) + Z Bigz (az;) < Z h(z) =

i=1

:>Zazfl alz +Zﬁzf2 a21 SZ (31)
i=1 i=1 i=1

where n € N*, and a1; € Ay, ag; € As, z; € M, a; ER, B; € R, for each i € {1,...,n}.
Then, there exists a positive linear operator L : E — F such that
a) Logi < f1 on Ay, Logs < fy on Ag, and
b) Loh <7 on M.

Proof. Step 1. Remark that the condition (3.1) is equivalent with the following condition:

Zaigl (a1;) + Zﬁifh (az;) < Z Aih (2;) =
= Zazfl ai;) + Zﬂlfg az) < Z (3.2)

=1
where n € N*, and ay; € Ay, as; € Ag, zi € M, oa; € R, B; € R, \; > 0, for each
ie{l,..,n}.
Obviously, (3.2) = (3.1). To prove that (3.1) = (3.2), we analyze three cases:
Case 1. Suppose that \; € N* .../ A, € N*. We define the elements (yl)’\ﬁ' e M
as follows:

Yr ==Y\, = 21,

Yxi+1 = = Yni+ = 22,
........................... ,
Y+ A +1 = 0 T Y4 rn T Zne

We denote m = Ay + -+ A, € N* = m > n because \; > 1, for all i € {1,...,n}. Now,

we have:
m

Z aigr (a1;) + 251&72 (agi) < Z h
i=1 i=1

=1

2 Z%’fl (a1;) + ZﬁifZ (azi) < ZT (ys) = Z Air (21)
i=1 i=1 i=1 i=1

Case 2. Assume that \; € Q, for all ¢ € {1,...,n}. Let us suppose that \; = %,
where p; € N and ¢; € N* for all ¢ € {1, ...,n}. Denote by ¢ the least common multiple of
1y -, Gn- It follows that for all ¢ € {1,...,n}, there exist k; € N such that ¢ = k;q;. If

D oaigi(a) + ) Biga(az) <Y %h (21) = pq h
i=1 i=1 =1 =1

then
- - - Case 1
> qaigr (a1:) + > qBiga (az) <Y pikih (z:) T
i=1 i=1 i=1
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C 1
= anzfl ay; +Zqﬁzf2 az;) <szkr z)

i=1

= Zazfl alz + ZﬁzfQ a2z S Z plqkl,r (Zl) = Ill:’l" (Zz) =
i=1 =

= i=1 =1 i

Case 3. Suppose that \; € Ry, for all i € {1,...,n}. We apply Case 2 and use that F'
is Archimedean.

Step 2. We will prove that there exists a monotone sublinear operator S : £ — F
such that :

Sogi < fron Ay, Sogs < foon Ay, and Soh <r on M.

Define S : E — F by the following formula: S(z) = inf{z aifi(a1i)+ > Bif2 (azi) +
=1 i=1

Z Air(z) |« < Z ;g1 (ar;) + Z Big2 (a2:) + Z Aih (zi),n € N*, and ay; € Ay, ag; €

Ag,zl eM, o; € ]R Bi eR N > O for all i e {1, .. n}} for each z € E. (Remember that
E = span(g1(A1) U g2(A2) U h(M)) C Ep).
Firstly we will prove that the above infimum exists in F. Let

m m m n n
= Z o (af;) + Z Bige (as;) + -21 Nih (z5) < Zlaigl (a1;) + 215192 (a2;) +

Jj=1 = 1= 1=
Z)\h(zz) where a}; € Ay, ay; € Az, z; € M, o) €R, B € R, N, € R, j € {1,...,m} are

ﬁxed and ay; € Ay, a9 € Ag, zi € M, a; € R, B; €R, \; > 0,4 € {1,...,n} are arbitrary.
Obviously, we can suppose that m = n. Then we can write:

20491 (a);) + 25}92 (ay,) — Zajgl (a1;) — Zﬁjgz (azj) <
j=1 j=1 j=1 j=1
<Y Nh(z) =D Nk (2
= =

According to (3.2) and using that: —\} < ‘)\; )
positive values, we obtain the following inequality:

Za}ﬁ (af;) + Zﬁ;fz (ay;) — Zajfl (a15) — Z/ijQ (azj) <
j=1 j=1 j=1 j=1

,...,n} and that h takes

and hence,

Yoagfi(ay) + D Bifa (ah) = D[Nl (#) <

j=1 j=1 j=1

<Y aifi(ay) + Y Bifaagy) + D> N ().
i=1 j=1 j=1
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So, the set that appears in the definition of S(z) is minorized in F' and hence there
exists its infimum (denoted by S(z)).
It is straightforward to prove that S is sublinear and monotone. Moreover we have:
1) Sog; < fj on A;, for each j € {1,2}. (Indeed, for example, for j = 1 and a; € 44,
we have g1(a1) = 1-g1(a1) +0-ga(az) +0-h(z), with some as € As and z € M, it follows
that S(g1(a1)) <1- fi(a1) +0- f2(az) +0-7(z2)).
2) Soh < r on M.(Indeed, if z € M, then for some a; € A; and as € A, we have
h(z) = 0-g1(a1)40-g2(az)+1-h(z) and hence S(h(2)) < 0-f1(a1)+0-fa(az)+1-1(z) = r(2)).
Step 3. Now we will prove the existence of a positive linear operator L : E — F' such
that
a) Log; < f; on Aj, for each j € {1,2}, and
b) Loh <ron M.

We apply Step 2. and the existence form of the Hahn-Banach theorem. Also, we apply
the remark mentioned at the end of the proof of the Theorem 2.4. m

Now we will simplify successively the form of the left members in the inequalities
which appear in (3.1).

THEOREM 3.2. Let Ey be an ordered vector space, F' a Dedekind complete ordered vector
space, and let Gy, Go be two ordered vector spaces and M a nonempty set. Let also
h: M — (Ey)y and v : M — F be two maps, P; : G; — Ey linear operators and
T; : G; — F positive linear operators, where j € {1,2}. Denote by E = span(P,(G1) U
Py(G2) Uh(M)) C Ey. Then, the following conditions are equivalent:
(i) There exists a positive linear operator L : E — F such that
a) Lo P; =T; on Gj for j € {1,2}, and
b) Loh <71 on M.

(i) The following implication holds

P (’Ul +P2 'U2 Z Zz =T ’Ul)—l-Tg 7}2 <Z Zz R (33)

i=1
where n € N*, vy € Gy, vo € Go and z; € M, for alli € {1,...,n}.

n
Proof. (i) = (4i) is immediately. Indeed, if P (v1) + P (v2) < > h(z;), then, because L
i=1

is a positive linear operator, we have

L(Py (v1) + P2 (v2)) < L(h () YT (01) + T (02) < > ().
i=1 =1
(#i) = (i) is a consequence of Theorem 3.1. Indeed, let us prove that, for example,
Lo Py =T, on Gy. If v; € Gy, then, because Lo P; <Tj on Gy we have L(P; (—v1)) <
Ty (—v1) and since L, P; and T; are linear, it follows that —L(P; (v1)) < =T} (v1), that
is LOP1 ZTl on Gl. ]

We remark that the form of the left side in the inequalities which appear in (3.3) can
be simplified still, if G; and G5 are two vector subspaces of the ordered vector space Ej.
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THEOREM 3.3. Let Ey be an ordered vector space, F' a Dedekind complete ordered vector
space, and let G1, Go be two ordered vector subspaces of Ey and M an arbitrary set. Let
also h : M — (Ep)y, and v : M — F be two maps, and Ty : Gy — F, Ty : Gy — F
two positive linear operators. Denote by E = span(G1 U G2 U h(M)) C Ey. Then, the
following conditions are equivalent:

(i) There exists a common positive linear extension L of Ty, Ts to the space E (that
is L="1T; on Gj, for j € {1,2}) such that Loh < r on M.

(i) The following implication holds

’Ul+'l}2<Zh Zz :>T1(’l}1 +T2 1)2 SZT (34)
i=1 i=1

forn € N* v; € Gy, v € Gy and z; € M, for each i € {1,...,n}.
Proof. Apply Theorem 3.2 for P; = i; the inclusion of G; in Ey, for j € {1,2}. =

A new step to simplify the left members of the inequalities that arise in (3.4) is to
choose M an arbitrary subset of (Ey) and to take h = 4, the inclusion of M in Ej.

THEOREM 3.4. Let Ey be an ordered vector space, F' a Dedekind complete ordered vector
space, and let G1, Gy be two ordered vector subspaces of Ey and M an arbitrary subset of
(Eo)s. Let alsor : M — F be a map, and Ty : Gy — F, Ty : Gy — F two positive linear
operators. Denote by E, the vector space span(Gy U Go U M) C Eqy. Then the following
statements are equivalent:

(i) There exists a common positive linear extension L of Ty, Ta to the space E such
that L <r on M.

(i) The following implication holds

U1 + V2 <ZZZ:>T1 ('Ul +T2 ’02 Z Zl s (35)
i=1 =

where n € N*, v € G1, vo € G2 and z; € M, for each i € {1,...,n}.

REMARK 3.5. 1) Note that this theorem generalizes a result formulated without proof
in [4], and applied in [5]; for the proof, see Theorem 1, p.63 in [6]. Also, Theorem 3.4
generalizes [7], Theorem 6.4. This result is the consequence of our Theorem 3.4, obtained
taking G = {0} and T5 = 0 (the null operator on Gs).

2) If moreover than in the Theorem 3.4, the cone (Ep) is generating and M = (Ep) 4,
then E = Ej and thus the Theorem 3.4 gives the existence of a common extension of 77,
T5 to the whole Ej.

3) We have also E = Ej if Ej has a positive algebraic basis, chosen instead of M.

Note that we can also simplify the form of the right side in the inequalities which
appear in the condition (#7) in all previous theorems of this section. It suffices to choose
the set M a nonempty set closed under addition (in an arbitrary ordered vector space E;
for Theorem 3.1 and Theorem 3.2) and to assume that the maps —h and r are subadditive.
So, for example (3.1) becomes

Zazgl (a14) +Z@92 (ag;) < h(z :>Zazf1 (a14) +Zﬁzf2 (az;) < 7(2),



14 R.-M. DANET

forn € N*, z € M, and ay; € A1, ag; € Az, a; € R, 5; € R, for each i € {1,...,n}.
Also, (3.5) becomes: vy + vy < z = Ty (v1) + Ta (v2) < 7(z), where v1 € G, v2 € G5 and
ze M.

REMARK 3.6. As consequences of the results included in this section, we obtain respec-
tively Theorems 6.1, 6.2, 6.3 and 6.4 from [7]. O

4. Other common positive linear extensions using an additional set. The fol-
lowing common extension result is in the line of a result of R. Cristescu, concerning the
extension of a positive linear operator. This result by R. Cristescu generalizes a result
obtained by Z. Lipecki (see Corollary 4.3 below) for the extension of a positive linear
operator defined on a majorizing vector subspace of an ordered vector space. Note that
in the following theorem, F', the range of the operators is an ordered vector space, not
necessary Dedekind complete.

THEOREM 4.1. Let Eg and F' be two ordered vector spaces, G1, and Go be two vector
subspaces of Ey and M C Ey a nonempty set. Let also Ty : Gy — F, Ty : Go — F
be positive linear operators and P : Ey — F a monotone sublinear operator such that
P =T, on Gy and P =Ty on Gs. Denote E = span(G1 U Gs U M) and suppose that

P (Z z) = Z P(z) (4.1)

where n € N* and 21, ..., 2z, € M.
Then, there exists L : E — F' a positive linear operator such that
a) L=Ty on Gy, L =T, on G2, and
b) L =P on M.
Proof. Define L : E — F by the following equality:

L <vl + vy + Z%’%) =T (v1) + To (ve) + Z%‘P (z),

i=1 i=1
where n € N*, v € Gy, v2 € Gy and z; € M, o; € R, for all ¢ € {1,...,n}. We intend to
prove that L is well-defined. Firstly, we will prove that(4.1) = (4.2), where (4.2) is the

following statement:
i=1 i=1

with n € N*, z; € M, \; € Ry, for all i € {1,...,n} (actually the statements (4.1) and
(4.2) are equivalent). Of course, it suffices to prove the inequality ”>” in (4.2). Fix A € Ry
with A\; < A, for all ¢ € {1,...,n}. Then, the subadditivity of P, the property of P to be
positively homogeneous together with our assumption (4.1) yield:

2)\§:P(zl En: Z)\le
i=1

i=1
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Next we show that
n n
U1 + vo + Z/\zzz >0 = Tl(Ul) —|—T2(1}2) + ZAzP(zZ) >0 (43)
i=1 i=1
if vy € Gy, v € Ga, A1, .., \p ER and zy,...,2, € M. Indeed, put I = {1 <i<n |\ >
0}, and J ={1<j <n|\ <0}. We have

’U1—|—U2+Z/\ZZ>Z LTS

icl jeJ
and hence, by the monotonicity of P, it follows that

P (Ul + va + Z )\izi> > P Z(_)‘j)zj

iel jeJ
Now, we will use again the subadditivity of P, and that P =T} on G1, P = T3 on Ga,
obtaining:

T1 (’Ul) + T2 (Ug) + P (Z )\zzz> Z P Z(—)\j)zj
icl jeJ

According to (4.2) we have:
Ty (v1) + Tz (v2) + Y NP(z) 2 D (=A)P(z),

iel jeJ

and hence
n

Ty (v1) + Ty (v2) + Y AiP(z) > 0.
i=1
Now we will prove that L is well-defined. Let

V] +vé+Zazz = o] + vy —I—Zﬁj
i—1

where v}, v{ € Gy, vh, v§ € Go, m, n € N*| 2zl € M, o; € R, for all i € {1,...,m}, and
zi € M, Bj € R, for all j € {1,...,n}. Then

(v] — oY) + (vh — vl +Za,z +Z 0,
so, according to (4.3),
Ty (V) — o)) + T (vh — vy —|—Zo¢1 —I—Z( Bj) P(z]) > 0.
It follows that

Ty (v) + T U2+Zaz ) =T (v]) + T2 (v +Zﬂg

=1

L(v’l—i—vé—l—ZaizZ{)—L U1+”2+Zﬁg ,
i=1



16 R.-M. DANET

that is L is well-defined. It is straightforward to prove that L is a linear operator. By
(4.3) it follows that L is positive too.

Clearly, L extends T} and T5. (Indeed, for example, taking v; € G1, v =0 € G5 and
z € M we can write v1 = v1 + 0+ 0 - z and therefore L(vi) =T (v1) + 12 (0) + 0 P(z2),
that is L = Ty on Gy). Also, obviously, L=P on M. u

REMARK 4.2. The conditions of the Theorem 4.1 determine L uniquely. Suppose by the
way of contradiction that there exists L; : span(G1 U Go U M) — F such that: a) Ly is
positive and linear; b) L1 =T on Gy, L1 =T on Go; ¢) L1 = P on M. Then we have

L1 (’Ul —+ vg + Z()é121> = L1 (’01) + L1 (Ug) + ZalLl(zl) =

i=1 i=1

=T (v1) + Tz (v2) + z": aiP(z) =L (vl +vg + zn:aizz) ,

i=1 i=1
and so Ly = L. O

Taking in Theorem 4.1, G; = G, Ty =T and G5 = {0} C Ey, Tz : G2 — F, T»(0) = 0,
and E = span(GUM), we obtain a result of R. Cristescu (see [3]). This result generalizes
a theorem of Z. Lipecki (see [8]). Actually this Lipecki’s result is a consequence of our
Theorem 4.1. Remember that a vector subspace G of an ordered vector space Ej is called
a magjorizing subspace if for each x € Ey, there exists v € G such that z < v (or,
equivalently, there exists u € G such that u < z).

Also, if G is a majorizing vector subspace of Ey, F' a Dedekind complete ordered
vector space, and T : G — F is a positive linear operator, the operator T : E — F (well-)
defined by T(x) = inf{T(v) | v € G, v > x}, x € Ey is monotone and sublinear. Also
T=TonG,andif L: Ey — Fisa positive linear operator which extends 7', then L < T
on FEjy.

COROLLARY 4.3. ([8]) Let Ey be an ordered vector space, F' a Dedekind complete ordered
vector space, G a majorizing vector subspace of Ey, M C Ey a nonempty set and T :
G — F a positive linear operator. Then, the following are equivalent:

(i) T extends to a (unique) positive linear operator L : E — F such that L = T on
M;

- n n o _
(i) T <Z zl) = > T(z), where n € N*, and z1, ..., 2z, € M.
i=1 i=1

Proof. (ii) = (i) follows from Theorem 17.

Conversely if L : E — F is a positive linear extension of T such that L = T on M,
we have, for n € N*, and z1,...,2, € M,

1 =1 =1 =1

1=

Hence, according to the subadditivity of T, we have > T(z;) =T (Z zi>. n
i=1 i=1

The following common positive linear extension result is a consequence of Theorem
4.1, formulated in the line of Corollary 4.3.
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COROLLARY 4.4. Let Ey be an ordered vector space, F' a Dedekind complete ordered
vector space, G1, and Go be two vector subspaces of Eqy, one of them, say Gy, majorizing,
and M a nonempty subset of Ey. Let Ty : G1 — F and Ty : Go — F be two positive linear
operators such that Tl =T on Gs. Denote E = span(G1UGs U M). Then the following
statements are equivalent:

(i) There exists a positive linear operator Ly : E1 — F such that

a) L=T; on Gy, L =T, on Gy, and
by L=T; on M.

- n n _

(i) T <Z zi) = Y T(z;), where n € N*, and z1,..., 2z, € M.
i=1 i=1

Proof. (ii) = (i) is obviously, according to Theorem 4.1 applied for P = T}.

(1) = (1) can be proved like in Corollary 4.3, putting 7 instead of T. m

The following result is a consequence of the Theorem 4.1 for the case when the set
M C Ey is closed under addition.

COROLLARY 4.5. Let Ey and F' be two ordered vector spaces, G1, and Gy be two vector
subspaces of Ey, and M a nonempty subset of Ey, closed under addition. Let P : Eg — F
a monotone sublinear operator, and Ty : G — F, Ty : Go — F, two positive linear
operators such that P =T on Gy and P =Ty on Gy. Denote E = span(G1 U Ga U M).
Then, the following are equivalent:

(i) There exists a positive linear operator L : E — F such that

a) L=T; on Gy, L =T, on Gy, and
b) L=P on M.

(i) P additive on M.
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