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Abstract. We consider a problem of intervals raised by I.Ya. Novikov in [2], which refines
the well-known theorem of J. Marcinkiewicz concerning structure of closed sets [3, Chapt. IV,
Theorem 2.1]. A positive solution to the problem for some specific cases is obtained. As a result,
we strengthen the theorem of Marcinkiewicz for generalized Cantor sets.

1. Introduction. Let us start with some basic notations. For any set M C R by uM
we will denote the usual (Lebesgue) measure of M. Further, by sup M (inf M) we will
mean the least upper bound (the biggest lower bound) of M, respectively. We will write
max M, min M instead of sup M, inf M when sup M € M, inf M € M.

Let F be a closed bounded nowhere dense set on R with a positive measure and let
0(y) denote a distance from y to F. The integral of Marcinkiewicz is defined as follows:

max F'

A
nw = [ S 1)

min F
As is well-known, for each A > 0 the integral (1) converges for almost all points of F' [1],
[3, Chapt. IV, Theorem 2.1]. The result can be reformulated as follows (see [3, p. 131]):
let {(a;;a; + 8;)}32, be a set of intervals from [min F;max F'] contiguous to F and let
s;(x) denote a distance from x € F to the interval (a;;a; + ;). Then convergence of (1)
is equivalent to convergence of a series

2 <i>>+ | ?
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2 K. E. TIKHOMIROV

Thus, one can claim that the sequence {8‘6(1'1 } belongs to [, for any p > 1 and almost

all x € F. 1.Ya. Novikov conjectured that a stronger result takes place [2]. Recall that a
non-increasing rearrangement of a real sequence {u;}32; is defined by

w; :==inf{r > 0:card{j > 0: |u;| > 7} <i}, i=1,2,...

The rearrangement is well defined for any bounded sequence.

COoNJECTURE 1.1 (Novikov). For almost all x € F the sequence {S,‘s(ix)} is contained in
li,00, that is,
(5a) - ®
supn 00
np Sn(m) b
*
where (s:&)) s the n-th element of the non-increasing rearrangement of { sf(ia:) } .

Novikov suggested a stronger variant of the above conjecture known as the problem
of intervals. Let n > 0 and a;,d; € R, i =1,2,...,n, satisfy conditions

6i >07 Z:1,2,,7’l, a1 <ag <0 < ay.
The sequence of intervals {[a;; a; + 0;]}7; is then called a configuration (of intervals).
Note that the elements of the configuration (intervals [a;;a; + d;]) may intersect. The

set of configurations for all possible values of n,a;,d; will be denoted by A. For a fixed
configuration v = {[a;; a; + 0;]}1, we can construct a set

Q) :={te R: Ik =k(t) >0:card{i: t € [a;;a; + kd;]} > k}, (4)

where card M denotes the number of elements in the set M. In other words, a point ¢t € R

belongs to Q(v) if and only if there exist 1 < k() < n and indexes 1 < i3 <ig < -+ <
k(t)

ix(ty < n such that ¢ belongs to the intersection (1 [as;;a;;, + k(t)d;;]. Evidently, the set
j=1

Q(v) is closed as a union of a finite number of closed sets. Let also
1$2(v)
i1 0

Next, for any set of configurations B C A define

K(v) =

K(B) :=sup{c: c= K(v) for some configuration v € B}.
CONJECTURE 1.2 (Novikov). K(A) < occ.

The problem of intervals is probably a difficult one, and we are far from getting a
complete solution to it. Still, we are able to prove K(B) < oo for certain subsets B C A.
As a result, we will prove the Conjecture 1.1 for generalized Cantor sets.

2. Auxiliary results. We start with some elementary facts about sets Q. The first
lemma does not require a proof.

LEMMA 2.1. Letv = {[a;;a;+ 6]}, € A, d € R and w = {[a; +d;a; +d+6;]}_,. Then
Q) ={t:t+deQuw)}.

LEMMA 2.2. For any configuration v = {[a;;a; + ]}, € A we have [a,;maxQ(v)] C
Q(v).
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Proof. Since max Q(v) € Q(v), there exist 1 < k < n and indexes 1 < i3 < ig < -+- <
ix < n such that maxQ(v) < a;; + kd;; for j = 1,2,...,k. It implies that for any
t € [a,; max Q(v)] we have a;; < an, <t <a;, +kd;,, j=1,2,...,k, so that ¢ belongs to
Q). m

LEMMA 2.3. Letv = {[a;;a;+ 6|} € A, m € [I;n—1] and w = {[a;;a;+6;|}%,. Then
Q(w) = Q(v) N [ar; max Q(w)].

Proof. First, it is clear that Q(w) C [a1;max Q(w)] and Q(w) C Q(v). Now, let ¢ €
Q(v) N [a1; max Q(w)]. If, additionally, t > a,, then, by Lemma 2.2, t € Q(w). It is also
evident that Q(v) N [a1;am) C Q(w). Combining the embeddings, we get the result. m

LEMMA 2.4. Let v = {[a;;a; + 6|}, be a configuration from A. Then
max Q(v) — ap, < Z ;.

Proof. Since max Q(v) € Q(v), there exist 1 <k <mand 1 <i; <ig < -+ < i < n,
such that max Q(v) —a;; < ké;, for all 1 < j < k. It follows that

max Q(v) — a, < min(max Q(v) —a;;) < km1n5 < 25

J =1

Let A := {v € A: the set Q(v) is connected}.

LEMMA 2.5. Let v = {[a;;a; + 6;]}7-, be a configuration from A. Then there exists a
configuration w = {[b;;b; + 8;]}7_, € A" such that K(w) > K(v).

Proof. Suppose, v ¢ A’. Taking into account Lemma 2.2, there exists m € [1;n — 1] such
that [a1;am] C Q) but [a1; am41] € Q(v). Let 2 := {[a;; a; + §;]}7,. From Lemma 2.3
it follows that the set Q(x) is connected. Indeed, since [a,; max Q(z)] C Q(z) C Q(v), w
have:

Q(x) = Q(v) N [a1; max Q(x)] = [a1;am] U (Q(v) N [am; max Q(z)]) = [a1; max Q(z)].

Let ay, aj, ..., a;, be real numbers such that a; = a; foralli = 1,2,...,m; aj—a}; = a;—a;
foralli,j € {m+1,...,n}; a,,,; = maxQ({[a;; a; + ;] };2,) and consider a configuration
v = {[al;al + 0; ]}Z 1- By Lemma 2.3 and above reasoning, [a';ay, ;] = Q(x) C Q(v').
Further, let t € Q(v) \ Q(z) (note that it implies ¢ > a,,4+1). By definition, there exist
1 < k(t) <n and indexes 1 < iy < idp < -+ < iy < n such that max(a;;; maxQ(z)) <
t <ai, +k(t)d;; for j =1,2,...,k(t). Now, fix j and study two cases. If i; € [m + 1;n]

then, clearly,
max(a’g'maXQ(:r)) =ai, + a1 — Gng1 <t+ap, . —amyr < a;j + k(t)d;; -

If i; € [1;m] then with necessity max(al7,maXQ( r)) = an, o <t4an, g — amer <
ai, +k(t)di;. Thus, t + a5, 11 — amir € Qv) N [max Q(z); +00). It follows that p(Q2(v’) N
[max Q(x); +oo)) > 1(Qv)\Q(x)) whence K (v') > K(v). Besides, if m = n—1 then Q(v")
is connected. Otherwise, we repeat the above arguments for configuration v’ and construct
a configuration v” = {[a}; a + 0;]}}_; such that K(v") > K(v') and [af;a;, 5] C Q(v").

1717



4 K. E. TIKHOMIROV

If m = n — 2 then the set Q(v”) is connected and the lemma is proved. Otherwise, we
apply the arguments once more, etc. m

Next, fix n > 0 and consider a function
fo{1,2,...,n—1} — 2{b2m=1}

where 2{1:2:-7=1} denotes the set of all possible subsets of {1,2,...,n—1}. We will call
f the function of intervals (of order n) if for all 1 <1i <n — 1 the set f(i) is not empty
and max{j : j € f(i)} =i. Now, let v = {[a;; a; + 0;]}1, € A and f be some function of
intervals. We will say that the configuration v is f-admissible if

aiv1 < maxQ({[a;;a; + 0;]}je () (5)

for i = 1,2,...,n — 1. Whenever for all 1 < ¢ < n — 1 we have equality in (5), the
configuration v is called f-optimal.

REMARK. Clearly, any f-admissible configuration belongs to A’.

REMARK. It is not difficult to see that if we define a function of intervals g of order n
by g(i) ={1,2,...,i},i=1,2,...,n — 1, then any configuration v = {[a;; a; + &}, €
A’ is g-admissible. Indeed, since the set Q(v) is connected, [a;;a;11) C Q(v), implying
[ai; aiy1) € Q{[az;a; +6;1}i21), i =1,2,...,n—1. So, aiy1 < max Q({[a;; a; +5;]}i—,),
i=1,2,....n—1.

LEMMA 2.6. Let f be some function of intervals of order n and w = {[b;;b; + 0;]}1 1,
v = {[as;a; + 6]}, be an f-optimal and an f-admissible configuration, respectively.
Then K(w) > K(v).

Proof. By Lemma 2.1, it is sufficient to check the case by = a;. We need to prove that
max Q(w) > maxQ(v). Let m € [1;n] be the maximum number such that b; > ay,
i = 1,2,...,m. Suppose that m < n — 1 (note that a,,+1 > b,, because otherwise
bm+1 > am+1, and the assumption is wrong). By definition of f-admissibility, there exist
1 <k <cardf(m) and i; < ig < -+ < ig, 4 € f(m), | = 1,2,...,k such that a1
belongs to the intersection of intervals [a;,; a;, + kd;,], I = 1,2,..., k. Since amy1 > by
and b;, > a;, 1 =1,2,...,k, the point a,,+1 belongs to (k] [bi,; bi, + K0;,]. Tt follows that

=1
amy1 < max Q({[b;; bj + 6]} jef(m)) = bm+1 and the assumption is wrong. Thus, for all

i € [1;n] we have b; > a;. Finally, applying similar arguments to max Q(v), we get that
max Q(w) > max Q(v). m

Further, we will need one more definition. Let v = {[a;; a; + ;] }™; be an f-admissible

configuration for some function of intervals f of order n and C' > 0 be some constant.

Then by C, f-rarefication of v we will mean any configuration w = {[b;; b; + k] ?21_1,

n—1 n
where k9,1 = 6; fori =1,2,...,n, > ko; <C > ¢ and points b; are defined as follows:
i=1 i=1

bai = b2i—1 + k21, 1=1,2,...,n—1;

b2i+1 = max(bgl- + R2i, Max Q({[bgj_l; bgj_l + H?j—l]}jef(i)))a = ]., 2, e, — 1.
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It is not difficult to see that w € A’ that is, Q(w) is connected. Indeed, [b2;—1;b2;] =
[bgi_l; boi_1 + I{Qi_l] C Q(w), i =1,2,...,n — 1. Further, [bgi; bai + lﬁgi} C Q(U}) and, by
Lemma 2.2,

[b2i—1; max ({[ba; 15 baj—1 + K2 -1]}jeri)] C
Q{[b2j—1;b2j-1 + K21l jerw) C Q(w)
whence [ba;;b2;41] C Q(w), i = 1,2,...,n — 1. Finally, [b,—1; max Q(w)] C Q(w) (by
Lemma 2.2) and we get [by; max Q(w)] = Q(w).
Note, that there exist continuum rarefications for any given configuration. Still, there
is a common property shared by all of them.

LEMMA 2.7. Let v = {[a;;a; + 6;]}71 be an f-admissible configuration for a function of
intervals f and w = {[b;; b; + k;|};"1 " be a C, f-rarefication of v. Then uQ(w) > puQ(v).

Proof. By Lemma 2.1, it suffices to consider the case a; = b;. We need to prove that
bai—1 > a;, @ = 1,2,...,n; then we will automatically get maxQ(w) > maxQ(v).
We will act as in proof of Lemma 2.6. Let m € [1;n] be the maximum number such
that bo;—1 > a4, © = 1,2,...,m and suppose that m < n — 1. By definition of C, f-
rarefications, ba,, 41 > max Q({[ba;j—1;b2j-1+K2j-1]}jef(m))- On the other hand, a1 <
maxQ({[aj; aj +5]]}]Ef(m))’ where 5j = R2j—-1 and a; S bgj_l, ] = 1, 2, cee, M. It follows
that bomy1 > apm41. Consequently, the assumption is wrong and m =n. m

REMARK. With v and w defined as in Lemma 2.7, it is clear that K (w) > = K (v).

C+1
LEMMA 2.8. Let f be a function of intervals of order n, w = {[bi;b; + wi Y20t be a
O, f-rarefication of an f-admissible configuration v and @ = {[b;;b; + Ki]}i"7 " be a

configuration from A’ such that

bo; = boj_1 + Koi_1, i =1,2,...,n—1;

E2i+1 < max(ggi + Kaj, maxQ({[ng,l; BQj,l + kj-1ljer@)), i =1,2,...,n — 1.
Then puQ(w) < u(w).
Proof. The proof can be conducted the same way as in Lemma 2.6: we suppose that

by = b; and show by induction that b; > Bi, i € [1;2n — 1]. It follows that max Q(w) >
max Q(w). m

Further, we will use the notation C-rarefication instead of C,| f-rarefication when
f(@) ={1,2,...,4}, i =1,2,... The essence of the conception of rarefications is that in
some cases it is much simpler to estimate the measure of €2 for a rarefication than for the
original configuration. Next, we will prove Conjecture 1.2 with an additional restriction
on lengths of intervals. Let M C A be a set of configurations {[a;; a; + 0;]}?_; defined for
all possible n, a; and §; satisfying §; > d > -+ > §,.

THEOREM 2.9. K (M) < oo.

Proof. By Lemma 2.5, it is sufficient to prove the statement for configurations v =
{lai;a; + 6;)}— € MNA'. Let

n(k) = card{i € [1;n] : 4% < §; < 4"}, k € Z.
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Next, we construct a 256-rarefication w = {[b;; b; + ;] }2 7" of v by setting
+oo
Koy =32max{4' 11 €2, Y 2" 'n(k) =i}, i=1,2,...,n— L (6)
k=l

“+oo
Note that the function N(I) = Y. 2¥~!n(k) is non-increasing, vanishing for sufficiently
k=l

large [, and l lim N(I) = 400, soj Ko; are determined correctly. Further, for any [ € Z
——00

{icl;n—1]:ky >32-4"={ic[l;n—1]: max{4? : N(p) > i} > 4'} =
{i:1<i<min(n—1;N())}

and we get an estimate

n—1 “+oc0
> kg <4 Z 32 dlcard{i € [Lin — 1] 1 ky; > 32-4'} <128 > 4'N
i=1 l=—00 l=—00
“+o00 “+00 k “+00 n
128 ) QIsz )=128 Y 2n(k) > 28=256 >  4*n(k) <256 4,
l=—00 k=—o00 l=—00 k=—o00 =1

so w is indeed a rarefication with constant 256.
Our next goal is to show that bo; 1 = bo; + ko; forall 1 <i<n—1.Fixi € [1;n—1]
and consider any j € [1;4]. Let p € Z be such a number that 47 < kg1 < 4r+1 By

+oo
definition of M, the sequence {ka,—1}}_; is non-increasing and > n(k) = card{h €

k=p
—+oo
[1;7n] : kop—1 > 4P} > j. Therefore, N(p—1) > > 2n(k) > 2j. Denote by «; the relative
k=p
length of the interval [bgj,l; boj_1 + mgj,l} with respect to the distance between bg;41

. : K2j—1
and by;_1, i.e the value e —

First, suppose that 2j > i. Then N(p — 1) > ¢ and for all h € [j; ]

kop > 32max{4’ : N(I) > i} > 32-4P71 > 259 4. (7)
Applying (7) we get an estimation
K2j—1 K2j—1 1
@ = ba; + fizj —byj—1 Z;; Kop  20—J+1) ®)
Next, consider the case 2j < i. Using similar arguments, we get for all h € [j; 27]
Kop = 32 max{4l :N() > h} >32 maX{4l s N() > 25} > 2K95-1.
Thus,
a; < My <t 1 9)

boi + Ko — boj—1 Z?f:j kon 207 +1)

Now, suppose that ba; 11 = max Q({[ban—1;b2n—1 + Kan—1]}i_;) > ba; + K2;. It means
that there exist k € [1;i] and 1 < 43 <ig < -+ < i < isuch that byj11 < ba;,—1+kkai,—1,
that is, a;, > £, 1 = 1,2,...,k. On the other hand, from (8) and (9) it follows that
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ap, < h=1,2,...,i. Consequently,

2min(i7f11+1;h+1)7
k <card{h € [1;4] : kap > 1} <card{h € [1;7] : 2min(i —h+ 1;h+1) <k} <
card{h € [1;i] : 2(1 —h + 1) < k} + card{h € [1;4] : 2(h + 1) < k} < k
and the assumption is wrong. Thus, bg;11 = be; + K9, for all ¢ € [1;n — 1]. It remains to

2n—1
note that, according to Lemma 2.4, max Q(w) —ba,,—1 < > &;. Finally, by Lemma 2.7,
j=1

2n—2 2n—1 n
p(v) < pQw) = Y Ky + (max Qw) —bgn_1) <2 Y k; <2256 +1) Y 4;,
j Jj=1 j=1

and K(v) <514. m

3. Generalized Cantor sets. First, let us clarify the notion ”generalized Cantor set”.
Let [a;b] be some interval and {d;}5°, be a sequence of positive reals, such that

oo

> 2l <b—a.

i=1
We construct a sequence of open intervals {I;}5°; by induction. At first step, let I; be an
open interval of length d; from [a; b] such that a < inf I; and sup I; < b. We will refer to it
as the interval of the first rank. At second step, we choose two intervals of the second rank
I and I3 such that uly = puls = dy and a < infIo < suplp < inf [} < sup [} < inf I3 <
sup I3 < b. At step k, k > 2, we have 251 — 1 intervals already constructed. The set

k—1

[a; b] \2 U B I; consists of 2871 closed segments K1, Ky 2, ..., Ky or-1 (numbered from
left to r1ght) Then for each i € [2"7%;2F —1] we choose I; C K}, ;_or-1,, of rank k having
length dj such that inf Ky ; or-1,; < infI; and sup [; < sup Ky ;_or-1,; (certainly, we
must see to it that K}, ; are large enough to comprise corresponding open intervals). Let

C := [a;b] \ U I;- Whenever C is nowhere dense, we will call it the generalized Cantor

set. It is clear that C is closed and of positive measure.
Next, for a given n > 0 consider a function r,, = r,,(¢) defined on the set {1,2,...,2"—
1} by the formula

(i) =n —max{k >0:i=0 mod 2¥}. (10)

In other words, r,(i) is the minimal number such that i2™()~" is an integer (cer-
tainly, i2"»(Y~" is odd). Clearly, r, takes its values from {1,2,...,n} and for each
k€ {1,2,...,n} we have card{h € [1;2" — 1] : ,(h) = k} = 2¥~1. Let also

gn(i) = 27O 1 4 card{h € [1;i] : 7o (h) = r(i)}
for i € [1;2" — 1]. Note that the value 2»()=1 — 1 is the number of indexes h such that
rn(h) < (7). It is not difficult to see that ¢, is a bi-unique mapping of {1,2,...,2" — 1}

onto itself. Specifically, all h € [1;2" — 1] with r,(h) = k, k € [1;n], are mapped into
2812k — 1],
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Next, let d;, i = 1,2,...,n, be some positive reals. A set of configurations s defined
by the formula

s ={lai;a; + dn,)]}ii1" (11)

for all possible n, a;, d; will be denoted by 7. Note that, in the above construction of C,
(T, )1 € T for any n > 0 where I, (;) is the closure of I, ;) (we use the function
qrn here to reorder the intervals {Ti}fifl to get the valid configuration). Moreover, for
any i € [1;2" — 1] the rank of I, (;) coincides with the value of 7,(i). So, it is natural
to refer to the i-th interval of a configuration s = {[a;; a; + 6;]}°.7' € T as one having
the rank r, (7). It is clear that there is a straightforward connection between generalized
Cantor sets and configurations from 7, so the latter will be used as a tool for proving
the property we are concerned with. Now, we are ready to formulate the main results of

the paper.
THEOREM 3.1. K(T) < oo.
An immediate consequence of the above theorem is the following

COROLLARY 3.2. Let C be an arbitrary generalized Cantor set, {d;}52, and {I;}32, have
the same meaning as in the definition of C and s;(x) denote the distance from x to the
interval I;. Then for almost all points x € C

pli %
1] 0o-
{Si(x) }i—l €4,

Qui={t: Ik =k(t) > 0:card{i > 2™ : t € (inf I;;inf I; + 2kul;)} > k}

Proof. For any m > 0 let

and

Q= {t: 3k =Fk(t) >0:card{i > 2™ :t € (sup [; — 2kul;;sup I;)} > k}.

o0
First, it is clear that Q,, = |J Qm,n, Where
h=m-+1

Q= {t:3k =k(t) > 0:card{i € 2™ ;2" — 1] : t € (inf I;;inf [; + 2kul;)} > k}.

Besides, Q. C Qmnt1, B = m+1,m+2,..., so by continuity of measure pf),, =
li}lin Qynn- On the other hand, 2, , C Q(s) for any configuration s = {[a;; a;+0;] fifl eT
satisfying conditions a; = inf I, ;), 0; = 2uly, ;) for i € {I : rp(l) > m} (note that for
other indexes we can choose as small §; as we please). In view of Theorem 3.1, uf2(s) <

2h—1_q
K(T) (6 + > 2,uli> wheree = > §; can be as small as we want. Consequently,

i=2m—1 i (1) <m

o0
pQm <2K(T) 5. pl;. In the definition of Q_,,, the participating intervals ”expand”
i=2m-1
in the opposite direction, nevertheless, we can apply the above arguments to the set
o0
{t: =t € Q_n}. So, we get uQd_,, <2K(T) > pl;.

j=2m—1
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It is not difficult to see that for any point « ¢ Q,, UQ_,,
I gm—1 o
{N+2—1} €l (12)
S,L‘+2m—1_1(x) i=1
Indeed, suppose that (12) is false. Then, in particular, there exist £k > 0 and 0 < i1 <
I o
iy < ... < igp such that —L20 2t 5 Ly — 9 9k This implies

Sil+2m*171(‘”)

xT € (lnf Iil+2m—1_1 — ku[il+2m71_1;sup Iz‘l+2m—1_1 + I{f/,b[il+2m—1_1) C
(sup IiH,zm—l,l — 2kﬂ[il+2m—1,1;ianiH,Qm—l,l + 2kﬂ]il+2m—1,1),

l=1,2,...,2k, and, consequently, x € Q,, U Q_,,. Thus, the assumption is wrong and
(12) is fulfilled. It follows easily that for almost all points z € C \ (2, UQ_,,,),

pli ™
11 00-
{Si(x) }i—l & Moo

Taking m to infinity and having in mind the estimations for u€,,, u_,,, we get the
result. m

Before proving Theorem 3.1, we need to consider some auxiliary statements.
Let us begin by making some notations. Let n > 0. Every ¢ € {1,2,...,2" — 1} can
be uniquely represented in the form
n—1
i=>Y 72, 3 e{01},0<j<n—1 (13)
j=0
Define a function of intervals P, : {1,2,...,2" — 2} — 2{1.2:::2"=2} by the formula
n—1
Po(i) = 4 h: 3k € [0;n — 1] such that h =Y ;27 3,
j=k
where «y; are coefficients from the ”binary” representation of ¢ (13). Note that each element
of P,(i) is the maximal multiple of 2% (for some k > 0) not exceeding i. Cardinality of
P, (i) equals to the number of ”1”-s in the ”binary” representation of i.
Further, let f be some function of intervals of order 2" — 1 and s be an f-admissible
configuration from 7 defined by the formula (11). Then the C, f-rarefication s’ = {b;; b; +

271+1_3

Kitiq of the configuration s is called uniform if for all 1 <7 < 2™ — 2 we have
2n—1
C
Ko; = on _ 9 Z drn(j)
j=1
LEMMA 3.3. Let s € T be a configuration defined by (11) and s' = {[a;; a; +2d,., ;)] 7ot

be a Py-admissible configuration. Then for any Cy > 2 and the uniform Ci, P,-rarefica-
tion w' of s we have uQ(w'") > uQ(s).

Proof. According to Lemma 2.5, it suffices to consider configurations s € T N A’. Let
0i = dp(iy, 1 <4 < 2"—1. We may assume that n > 1. Consider the uniform C-rarefication

w = {[bs; b; + K] ?:{1_3 of the configuration s (C' > 4). Suppose that by;11 > bo; + Ko;
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for some ¢ € [1;2" — 2] and let M; C {1,2,...,i} be a set of indexes such that

bai1 = max Q{[boj—1;baj-1 + K2j-1]}j_1) =
max ﬂ [bgj_l; bgj_l + cardM; - /@2]‘_1]. (14)
jeM;
Consider two cases.
1) card(M; N Py (i)) > 3cardM;. Then, clearly,

b2i+1 S max m [bgjfl; b2j71 + 2card(M1- n Pn(Z)) . Iigjfl]. (15)
JEM;NPy, (i)

2) card(M; N P, (i)) < scardM;. First, note that whenever k € M; \ P, (i), there exists
le{k+1,k+2,...,i} such that r,(I) < r,(k). Indeed, suppose it is not true. Then,
by definition of the function r,, none of the numbers k 4+ 1,k + 2,...,4 is a multiple of
27=7n(k) Thus, k is the maximal multiple of 27" () not exceeding i, so k € P, (i) and
the assumption is wrong. Further, if & € M;\ P, (¢) and r,,(I) < r,, (k) for some | € [k+1;1]
then I — k > 27" 5o

bar—1 — bgp_q > 277"l

(16)

For some r € [1;n] consider a set
Zy ={k € M; \ P,(3) : rn(k) =7}.

Suppose that cardZ, > 0 and denote elements of Z, by ip, h € [1;cardZ,], i1 < iz <
- < icardz,. In view of (14) and (16),

cardM; - dp > byi—1 — bai—1 = (b2i—1 - b2icardZ,«_1)+

cardZ,—1 C 2" -1
Z (b2i}L+1_1 — b2ih—1) Z n CardZ ) Z 6],
h=1

whence
2r=1d card(M \ P, (i ))

CZQJ 1d

cardZ, < 4

Summing by all r such that cardZ, > 0 we get
4
card(M; \ P, (i) < 5card(Mi \ P (i)).
Since C > 4, the last inequality is impossible, implying card(M; N P, (i)) > %cardMi.
Thus, by (15), forall 1 <7< 2" —2

bai+1 < max{by; + "CZiamaXQ({[ij—U baj—1 + 2K2-1]}jer, (i) }- (17)
Now, let w = {[bl,b + I‘il] =1 '3 with RKo;_1 = 2k9i_1, 1 € [1;2" — 1]; Roi = Ko,
i € [1;2™ — 2] and let w’ = {[b}; b; + K] ?:;1_3 be the uniform (C/2), P,,-rarefication of

s'. Clearly, uQ(w) > p2(w). Further, &; = &} for all 1 <i < 2"*! — 3 and from (17) and
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Lemma 2.8, puQ2(w) < puQ(w’). Thus,
pQ(w') > pQ(w) > p(w) > p(s).

Lemma 3.3 will allow us to consider only P,-admissible configurations and their rar-
efications when proving Theorem 3.1. However, the rarefications are not so simple as in
proof of Theorem 2.9, and we have to use some probabilistic results to estimate K (7).
The following lemma delivers an upper estimate for the probability of a specific event for
the Bernoulli process. It is quite possible that the result cannot be directly derived from
the known facts, so, the full proof is given.

LEMMA 3.4. Let i) = {n;};_, be a sequence of independent random variables n;, P{n; =
1} = P{n; =0} = % Let also k,ly,ls,...,1, be some non-negative integers such that

j=1

o |

Finally, let

O () = 1, ifj<p—1l,n=1andn, =0 forallve[j+1;j+1],
o) = 0, else

Then

P{Xp: G (i) >k} <27* (18)

Proof. Note that P{G, ;(7) = 1} € {0;27471} j =1,2,...,p. Now, let 1 < j; < jo <
<o < g < p. It is evident that whenever j, 4+ 1, > j,+1 for some 1 <wv < kor jir > p—1Ii
then

P{GPJ& (ﬁ) = Gp,jz (ﬁ) == GP7jk (ﬁ) = 1} = 0.
Otherwise, the events (G;,(7) = 1), v=1,2,...,k, are independent. Thus, we have
k

- - . —k= 32 1,
P{GPJ1 (77) = GP»Jé (77) == Gijk (77) = 1} <2 =t

As a consequence we get the following estimate:

P —k— Zk) Liy
Py G=k< Y 2 =7 (19)
j=1

J1:J25--3Jk

where the sum in the right part is taken over all samples 1 < j; < jo < -+ < jx < p. Let
us denote the right part of the inequality (19) by h(l1,12,...,1,). We will consider h as a
function of real variables 1, z2,...,2, with the restrictions

p
.,k

Zz <-. (20)

j=1
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We will show that h reaches its maximum when z; = 22 = --- = x,. Indeed, suppose

that argmaxh = (z7,25,...,7),

- {x j ¢ {n,m},

€ ’ ’
1 - 10g2(27mn + Qimm)v .] € {nvm}

/ /
), @, # ), for some n and m. Let

J

Clearly,
27 4 27 m = 27 4 2T (21)
s0, (20) is fulfilled for 27. Further, in view of (21),

1 " " / / !
h(xy,25,...,2,) = h(z},25,...,2)) = E 2 1 =2 1 =
J1,J25--50k
k—2
—k— x’;
S (e gy 0
J1,J25e5Jk—2

n,mg{j1,....jk—2}
where the last sum is taken over all samples 1 < j; < jo < -+ < jg—2 < p such that
n,m & {j1,Ja,- -, jk_2}. Taking into account that

2—mx—m% _ 2210g2(27m;+27w$”)_2 — 1(2—x’n + 2—at’m)2 _

4
B B
4 )
we get h(zf,xy,..., ) > h(x},x),...,x,). Thus, the assumption was false, and
ep
zh =m§:-~-:x;jzlog2z.

Finally, applying the Stirling formula, we obtain

k k
Wyl = (F)okarom ) — gk AL (ENT ok Kook
? P kl(p —k)! \ep

and (18) follows. m

Proof of Theorem 3.1. Certainly, we may assume that n > 1. Let s be an arbitrary
configuration from 7 defined by the formula (11), and s’ = {[a}; al + 2d,.n(i)]}?ll_1 be a

1)

P,,-admissible configuration. In view of Lemma 3.3, it is sufficient to verify that for the
n+1
uniform 8e, P,-rarefication w’ = {[b}; b} + «!]};_, ~* of the configuration s’ holds

2" -1
pw') < C Z Koi1
i=1

for an absolute constant C. For each ¢ € {1,2,...,2" — 2} let M; be a subset of P, (%),
such that

max m (D513 by + cardM; - kh; 4] = max Q({[bh; 13 b, 1 + Kaj—1]}jep.(i))-
JEM,;

Evidently, whenever by, | > b5; + K5;, we have cardM; > 1 and

/ / li
2501 — by < cardM; - ko .
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By Lemma 2.4, the value max 2 (w’)—=b),.+, _5 is majorized by the total length of intervals
from the configuration. So, to prove the theorem, it is enough to check that

2n 1
Z cardM; -k, < Cy Z Ko 1 (22)
i€{1,2,...,2" 2} i—1

b1 >bo;+rs;
for some absolute constant C7.

Let p be a number from {2,3,...,n} and R, := {i € [1;2" — 1] : r,(i) = p}. Next,
consider a random variable §, taking values from R, with equal probability (that is,
P{¢, =i} =2'"r i€ R,). Let also 1, (i), m = 1,2,...,p — 1, be defined on R, by the
formula

) {17 m = r,(j) for some j € P, (i),
Nm (1) =
0, else.

It is not difficult to see that {n,,(£,) fn;ll considered as random variables are independent,

and P{n,,(¢&,) = 1} = P{nm(&,) =0} = 4, m =1,2,...,p — 1. Indeed, for any binary

sequence {am}fn;ll, am € {0;1}, m =1,2,...,p — 1, there exists the single ¢ € R, such

that 7, (1) =, m=1,2,...,p— 1.
For any fixed k > 1, we are going to estimate probability of the event
§p <27 =2, bye 1 > by + Ry, cardMe, = k. (23)
Suppose, (23) is fulfilled for {, =i, i € R,. For any number j € M; holds cardM;-r5; ; >
b;—1 — by;_1. On the other hand, if j # i and r/,(j) is defined by
/

r(3) :=min{r >0:r =r,(h) for some h € P,(i)N{j+1,j+2,...,i}}

then the set {j+1,7+2...,i} contains at least one multiple of 27~ "=, Since M; C P, (i),
the rank of j must be strictly less than /,(j), so, j is also a multiple of on—r,(4), Thus,
i—j>20) and
2m—1
cardM; - lﬁéj_l > b/2i—1 - /2j—1 > QH_T;(j)% Z Kl2q—1'
q=1

The last inequality can we rewritten as follows:

rn(j)—1 )
2Tk 4 G 5 2 (24)
n on _9 ort, (3)—rn(d)—1
e Z Qh_ldh
h=1

Note, that the left part of (24) depends only on r,(j). For any r € [1; p— 1], let I, be the
smallest non-negative integer number, such that

2r=1d, .k

— > ol=lr,
e Z 2h_1dh
h=1

Then, summing by r, we get

p—1
Sotc Lokl
— 2e e
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By definition of 7, the set M; does not contain indexes with ranks in the interval
(rn(4);77,(5)) for any j € M;\{i}. Taking into account that [, ;y < 77,(j)—7n(j)—1, we get
nrn(j)Jrl/(i) =0,v=12..., lrn(j)' Evidently, Nrn () = 1, s0 prl,rn(j)({nm(z)}'rpn_zll) =1,
with G defined as in Lemma 3.4 and [, » = 1,2,...,p — 1, determined above. Thus,
conditions (23) imply

p—1

S Gt ({n ()}528) = card (M \ {i}) = k — 1.
r=1

It follows that
p—1

P&, satisfies (23)} < P{>_ Gpr ({1 (E)Yo4) > b — 1} <217,

r=1

Summing by k (recall that k > 1), we get

(o)
> cardM, - kb, < 277> k2 R2d, < 2077, (25)
i€R,\{2"—1} k=2
b1 >ba;+Hhd;
Note that r,,(i) = 1 only if i = 2"~ and card P, (2"~ !) = 1. It means that with necessity
byn 1 = byn + k5. Finally, applying (25), we get
2" -1

Z cardM; - kY, | = 2”: Z cardM; - Ky, | < 4 Z Koy q-

1€{1,2,...,2" -2} p=2 ieR,\{2" -1} i=1
b1 >bh; kb, b1 >bh; kb,

Finally, we consider a question whether a stronger result for generalized Cantor sets
than Corollary 3.2 can be obtained. We can prove the following

4 =

PROPOSITION 3.5. Whenever ¢ : N — N is an increasing function with i
n—oo
there exists a generalized Cantor set Cy, such that for all x € Cy

0 (2 .

where {I;} are intervals from the definition of Cy, s;(x) is the distance from x € Cy to I;
o0

and (9”?;)) is the n-th element of the non-increasing rearrangement of{ “(I;)} .
S (@ i=1

Proof. First, note that we can find positive integer numbers ky,, k1 > ki +1, m >0,
such that
(km41 — km) T 00 (27)

and

M > m2™F2 for all m > 2 and ¢ > 2km-17km-2=1 (28)
(3

Next, let {d;}$2; be a sequence of positive real numbers such that dy, = 2777k § >0,
1.5 .
> 2i71d; < 1 and

i=1
max{d, : 7 € [kpm_1 + L kp — 1]} < 27Fm m > 2.
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We will construct the generalized Cantor set Cy4 according to the algorithm described at
the beginning of the section, with initial interval [0; 1] and d; determined above. The set
C, shall be "homogeneous” in the sense that for each £ € N the neighbor intervals from
{Ii}?ifl are equally distanced from each other and that for the distance hj we have:
hp=inf |J Li=1-suwp |J I
1<i<2k 1<i<2k
(in other words, the distance between the leftmost interval and the point ”0” equals the
distance between the rightmost interval and 7”17, as well as the distance between any
two neighboring intervals). Next, fix 2 € C4 and m > 2. The intervals I; with ranks not
exceeding k,,, 1 split [0; 1] into 2Fm—1 closed segments K; and, with necessity, = € K ; for
some j € [1;2Fm-1]. It is easy to see that K; comprises 2km—km—1=1 intervals of rank k,,.
Besides, for any two neighbor intervals Ij, and I; (I > h) of rank k,, from the segment
K;
inf I} — inf I, < max{d, : r € [km—1+ L; ky — 1]} + 21_k”‘+k"‘*1qu <

217km + 21*km+km—1’ulKj.

It is also evident that the leftmost interval of rank k,, from K is distanced from inf K

by not farther than 2~ Fmtkm—1 uK;; the analogous estimation holds for the rightmost
interval and sup K. Thus, if the set My, . is defined by

My, :=={i: I, has rank k,, and I; C K,}
then for any h € [1;2Fm—km-1=1]
card{i € M, , : s;(x) < h(2'7Fm 4 21 kmthm—1 Y > p, (29)

The formula (29) implies that for all i < 2Fm=Fm-1=1 we have

MIZ " > dkm > 2—m—2
si(x) = (20 Fm 4 2T kRt ) T rat

Taking into account (28), we get

I- *
(Z)(Z) (;1;)) >m, i€ [zkm—l_km,—Z_l;2k57n—k’m,—1—1].

In view of (27), we come to (26). =

REMARK. In particular, from Proposition 3.5 one can deduce that the series (2) with
A = 0 diverges for all x for some generalized Cantor sets. For instance, we can take Cy4
with ¢(n) = nlog(1l + n).
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