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Abstract. For an L2-bounded Calderón–Zygmund Operator T acting on L2(Rd), and a weight

w ∈ A2, the norm of T on L2(w) is dominated by CT ‖w‖A2 . The recent theorem completes a

line of investigation initiated by Hunt–Muckenhoupt–Wheeden in 1973 [12], has been established

in different levels of generality by a number of authors over the last few years. It has a subtle

proof, whose full implications will unfold over the next few years. This sharp estimate requires

that the A2 character of the weight can be exactly once in the proof. Accordingly, a large part

of the proof uses two-weight techniques, is based on novel decomposition methods for operators

and weights, and yields new insights into the Calderón–Zygmund theory. We survey the proof

of this Theorem in this paper.

1. Introduction. We survey recent developments on the norm behavior of classical
Calderón–Zygmund operators on weighted spaces, with a special focus on the Mucken-
houpt–Wheeden class of weights A2. Indeed, after the 40 some-odd years since the class
of Ap weights was introduced by Muckenhoupt and Wheeden, the theory has reached a
natural milestone, with the sharp dependence of norm estimates being established. We
concentrate on an exposition of the techniques behind this Theorem:

Theorem 1. Let T be an L2-bounded Calderón–Zygmund operator acting on L2(Rd)
(for precise definition see Definition 3). And, let w ∈ A2 (for precise definition see
Definition 8). We then have the estimate

‖Tf‖L2(w) ≤ CT ‖w‖A2‖f‖L2(w) . (2)
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2 M. LACEY

Here 0 < CT < ∞ depends only on the operator T and dimension d.

The theory of weights came of age in 1973, with the result of Hunt–Muckenhoupt–
Wheeden [12], which showed in one dimension that for w > 0 a.e., the Hilbert transform
is bounded on L2(w) if and only if w ∈ A2. This result was established for other suitable
collections of singular integrals in higher dimensions. But, early proofs of this fact deliv-
ered a poor control on the norm, and indeed, the significance of the sharp dependence
was a theme recognized over time.

The interest here is that the power of the A2 characteristic is in general sharp. Ac-
cordingly, the method of proof is delicate, and indeed sheds new light on methods and
techniques appropriate for weighted spaces, as well as the structure of Calderón–Zygmund
operators.

It is known that the estimate (2), together with sharp extrapolation [9], gives the
sharp estimate on Lp(w), for 1 < p < ∞, accordingly, we concentrate on the L2 case. We
recall definitions in the next two sections, and then recall different elements of one of the
proofs known of this paper, the pleasingly direct proof of Hytönen–Pérez–Treil–Volberg
[17]. The concluding section includes some historical remarks, and a variety of pointers
to cognate results and approaches.

Acknowledgments. Due to my, and my father’s, personal connection to Polish mathe-
maticians, it was my distinct pleasure to participate in the conference marking the cente-
nary of birth of Józef Marcinkiewicz. It was a fitting testament to the life of Marcinkiewicz,
of what was accomplished, what was lost, and finally, what the people of Poznań and
Poland can now achieve, in their beautiful and prosperous city and country.

2. Calderón–Zygmund Operators. There are two canonical examples of Calderón–
Zygmund operators that one can keep in mind. The first is Hilbert transform itself,
defined by

Hf(x) := lim
ε→0

∫
f(x− y)

dy

y
.

Here, one should note that if f is Schwartz class, then the limit above exists for all x, and
is referred to as the principal value of the integral. In brief, Hf(x) = pv f ∗ 1

x . But, the
Hilbert transform is a convolution operator, which introduces a subtle simplification in its
analysis in Lebesgue space. (There is no paraproduct to control.) Aside from the Hilbert
transform, the other canonical convolution operators are the Beurling in the plane, and
the vector of Riesz transforms.

A second example to keep in mind, one that motivated much of the development of
the Theory in the 1980s, is the Calderón Commutator defined as follows. For Lipschitz
function A on R, let

CAf(x) :=
∫

f(y)
A(x)−A(y)

(x− y)2
dy .

Note that we have CA = [MA, d
dx ]H, where MA is the operation of multiplication by A. We

require A to be Lipschitz, as then we have, in some average sense, A(x)−A(y)
(x−y)2 ' (x−y)−1.

And the deep fact is that we have ‖CA‖2 7→2 . ‖A‖Lip. But, this is not at all easy to
prove!.
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A general definition of Calderón–Zygmund operators we will consider.

Calderón–Zygmund Operators 3. Let 0 < δ < 1 and Let K(x, y) : Rd×Rd\{(x, x) :
x ∈ Rd} −→ R satisfy kernel estimates

|K(x, y)| ≤ CT |x− y|−d−j , x 6= y ∈ Rd , (4)

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ CT
|x− x′|δ

|x− y|d+δ
,

with the second condition holding provided |x − x′| < 1
2 |x − y|. Here, 0 < CT < ∞.

Occasionally, K(x, y) will be referred to as a Calderón–Zygmund kernel.
Consider a linear operator T : L2 → L2 such that

Tf(x) =
∫

K(x, y)f(y) dy, x /∈ supp f,

for a fixed kernel K(x, y).
We then say that T is Calderón–Zygmund Operator, and write T ∈ CZOδ and

‖T‖CZOδ
:= ‖T‖L2(dx) 7→L2(dx) + CT < ∞ .

One should note that in one dimension, that the kernel K(x, y) = 1
|x−y| is a Calderón–

Zygmund kernel, though the corresponding operator is not bounded. As well, it is hardly
clear that the Calderón Commutator is a bounded operator. Thus, it is a natural ques-
tion to find a simple characterization of the Calderón–Zygmund Operators. This class of
operators was characterized by David and Journé [7], in the famous T1 Theorem.

Theorem 5 (T1 Theorem). An operator T with Calderón–Zygmund kernel, is L2-bou-
nded if and only if for T > 0, we have the two uniform estimates over all cubes I ⊂ Rd.∫

I

|TχI |2dx ≤ T2|I| , (6)∫
I

|T ∗χI |2dx ≤ T2|I| . (7)

In the second line, T ∗ is the adjoint of T , namely it has the kernel K(y, x).

The import of this result is that the full L2-inequality already follows from the bound-
edness of the operator on a very small set of functions, namely the indicators of cubes.
We should note that this is not the formulation of the Theorem as in [7], but the version
found in [53, Chapter V]. Clearly, we prefer the form above, over its more familiar formu-
lation, as it does not require the supplemental space BMO. We refer to the two conditions
(6) and (7) as Sawyer testing conditions, as their use in characterizing the bounded of
operators first appeared in his two-weight Theorems on the Maximal Function [49] and
the Fractional Integrals [50].

Let us use this Theorem to see that the Calderón Commutator is bounded. Let us
take the interval I = [a, b], and then using integration by parts,

CA(χI)(x) =
∫ b

a

A(x)−A(y)
(x− y)2

dy

=
A(x)−A(b)

(x− b)
− A(x)−A(a)

(x− a)
+

∫ b

a

A′(y)
x− y

dy .
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The first two terms are bounded by ‖A‖Lip, and the third is the Hilbert transform applied
to A′ ∈ L∞. Hence the testing condition for CA follows from the L2-boundedness of the
Hilbert transform.

3. The Ap Weights. The Ap weights have the definition

Definition 8. For w an a. e. positive function (a weight) on Rd, we define the Ap char-
acteristic of w to be

‖w‖Ap
:= sup

I
|I|−1

∫
I

w dx ·
[
|I|−1

∫
I

w−1/(p−1) dx
]p−1

, 1 < p < ∞ ,

where the supremum is over all cubes in Rd. In the case of p = 1, we set

‖w‖A1 :=
∥∥Mw

w

∥∥
∞ ,

where M denotes the Maximal Function.

We note that ‖w‖Ap
is not a norm, but continue to use the familiar notation. Below,

we will also write w(I) =
∫

I
w dx for the (non-negative) measure with density w. It is a

critical property, one that is key to the many beautiful properties of the Ap theory, that we
have w > 0 a.e. In particular, this means that σ := w−1/(p−1) is unambiguously defined.
Also, note that we have wσp−1 ≡ 1, which casts the definition of Ap is a clear light: It
requires that this pointwise equality continue to hold in an average sense, uniformly over
all locations and scales.

We will refer to σ as the dual measure. This language is justified by a useful observation
from [49]. The inequalities below are all equivalent for a linear operator T :

‖Tf‖Lp(w) ≤ C‖f‖Lp(w) ,

‖T (σf)‖Lp(w) ≤ C‖Tf‖Lp(σ) , (9)

‖T ∗(wφ)‖Lp′ (σ) ≤ C‖Tf‖Lp′ (w) .

To pass from the first line to the second, use the change of variables f 7→ σ · f . There
is a routine calculation, which is based on the basic identity of the weighted theory that
p(p′ − 1) = p′. And, note that the last line is the formal dual inequality to the second.
Thus, the inequality (9) expresses duality in a natural way: Interchange the roles of w

and σ, and replace p by dual index p′.
Of course we are primarily interested in the case of p = 2. Two examples of A2 weights

to keep in mind, in dimension 1, are as follows. First, for an arbitrary measurable set
E ⊂ R, and N > 0, the weight is w = NχE + χR−E . As long as |E| > 0, one has
‖w‖A2 ≤ max(N, 1/N). Indeed, we can assume N > 1. For an interval I we have

w(I)
|I|

· σ(I)
|I|

≤ N |E ∩ I|+ |Ec ∩ I|
|I|

≤ N .

This shows that an A2 weight need not have any smoothness associated with it.
A second example is the borderline case of w(x) = |x|. This is not an A2 weight as

the dual measure σ(x) = |x|−1 is not locally integrable. But if we mollify the zero, setting
for 0 < α < 1, wα(x) = |x|α, then we have ‖wα‖A2 ' (1 − α)−1. (Test on indicators of
cubes.) It is for such examples that one can verify that ‖H‖L2(wα) ' (1 − α)−1. But,
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these examples are somewhat misleading, in that the simple behavior of their zeros is not
at all indicative of intricacy of the general A2 measure.

We comment on classical Theorem of Muckenhoupt [32] concerning the Ap weights
and the Maximal Function, defined by

Mf(x) := sup
t>0

(2t)−1

∫
[−t,t]d

|f(x− u)| dt .

Theorem 10. For w > 0, we have the following equivalences:

1. w ∈ Ap;
2. M is bounded as a map from Lp(w) to Lp,∞(w);
3. M is bounded as a map from Lp(w) to Lp(w).

Note that the weak and strong type norms are equivalent.

Clearly, the strong-type inequality implies the weak-type. Using the formulation (9),
and applying the maximal function to a the indicator of a cube directly proves that
w ∈ Ap. So, the content of the result is that the Ap property implies the strong type
inequality. Here, the fact that w > 0 a.e. is decisive, and the shortest – six lines – proof
of this is due to Lerner [30]. Nevertheless, it seems confusing that the weak and strong
types should be equivalent. The sharp dependence of the Maximal Function on the Ap

characteristic is helpful here. For w ∈ Ap, how does the norm depend upon ‖w‖Ap
?

Buckley [3] studied the question and proved

Theorem 11. For w ∈ Ap, we have

‖M‖Lp(w) 7→Lp,∞(w) . ‖w‖1/p
Ap

,

‖M‖Lp(w) 7→Lp(w) . ‖w‖1/(p−1)
Ap

(12)

Thus, the norm dependence is rather different. This is a basic set of inequalities, due
to the notion of Rubio de Francia extrapolation [48].

A final, critical property for us is the so-called A∞-property. It states that an Ap

weight cannot be too concentrated in any one cube. Indeed, as we will illustrate in the
context of the Maximal Function, this is the single property of Ap weights that can be
used to prove sharp results, and it can only be used once.

Lemma 13. Let w ∈ Ap, I is a cube and E ⊂ I. We then have

|E|
|I|

≤ ‖w‖1/p
Ap

[w(E)
w(I)

]1/p

. (14)

Proof. The property that w > 0 a.e. allows us to write

|E|
|I|

=

∫
E

w1/p(x)w(x)−1/p dx

|I|

≤ w(E)1/pσ(I)1/p′

|I|

=
[w(E)

w(I)

]1/p w(I)1/pσ(I)1/p′

|I|
which proves the Lemma.
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4. Dyadic Grids. Combinatorial arguments, stopping time arguments or decomposi-
tions of functions and operators, will frequently be done with the help of dyadic grids.
In this section, we collect a number of elementary facts that we will need from time to
time. At different moments, the methods and constructions of this section will in fact be
decisive for us.

By a grid we mean a collection G of cubes in Rd with I∩I ′ ∈ {∅, I, I ′} for all I, I ′ ∈ I.
The cubes can be taken to be a product of clopen intervals, although the behavior of
functions or weights on the boundary of cubes in a grid will never be a concern for us. If
G, G′ ∈ G, with G′ the smallest element of G that strictly contains G, we refer to G′ as
the G-parent of G, and G′ is a G-child of G′. Let ChildG(G′) denote the collection of all
G-children of G′. If the grid is understood, the G is suppressed in the notation.

We will say that G is a dyadic grid if each cube I ∈ G these two properties hold. (1) I

is the union of 2d-subcubes of equal volume (the children of I), and (2) the set of cubes
{I ′ ∈ G : |I ′| = |I|} partition Rd.

Associated to any dyadic grid D are the usual conditional expectations and martingale
differences are given by

EIf := χI · |I|−1

∫
I

f dx , ∆If :=
∑

I′∈Child(I)

EI′f − EIf . (15)

And, we also set

Ekf :=
∑
I∈D

`(I)=2−k

EIf , ∆kf :=
∑
I∈D

`(I)=2−k

∆If .

Then, by the Martingale Convergence Theorem, for f ∈ L1(dx), Ekf → f a.e. And, by
the Muckenhoupt Theorem for the Maximal Function, for w ∈ A2, and f ∈ L2(w), the
same conclusion holds.

4.1. Proof of Buckley’s Maximal Function Inequality. As an illustration of the
use the A∞ condition, let us return to Buckley’s estimate (12), and prove it in the dyadic
case. Namely, for choice of dyadic gridD in Rd, we define the associated Maximal Function

Mf(x) := sup
I∈D

χI(x)EI |f |

where here we have introduced the notation EIφ := |I|−1
∫

I
φ. Also, we are continuing

with the same notation for the Maximal Function, suppressing its dependence on the
choice of grid. For this operator, we will prove (12).

We make the definition of the stopping cubes.

Definition 16. Let G be a grid, σ a weight. Given cube I ∈ G, we set the stopping
children of I0, written C(I), to be the maximal dyadic cubes I ′ ⊂ I for which EI′σ > 4EIσ.
A basic property of this collection is that∑

I′∈C(I)

|I ′| < 1
4 |I| . (17)

We set the stopping cubes of I to be the collection S(I) =
⋃

j≥0 Sj(I), where we
inductively define S0(I) := {I}, and Sj+1(I) =

⋃
I′∈Sj(I) C(I). Thus, these are the max-
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imal dyadic cubes, so that passing from parent to child in S, the average value of σ is
increasing by at least factor 4.

Proof of (12). It is the fundamental Theorem of Eric Sawyer [49] that for the Maximal
Function, we have a powerful variant of the David Journé T1 Theorem. Namely, for any
pairs of weights (w, σ), we have the equivalence between these two inequalities

‖M(σf)‖Lp(w) ≤ C1‖f‖Lp(σ) ,∫
I

M(σχI)pw dx ≤ Cp
2σ(I) , I ∈ D . (18)

Moreover, letting C1 and C2 be the optimal constants in these two inequalities, we have
C1 ' C2. Notice that this shows that the Maximal Function bound reduces to a testing
condition.

And so, in the special case that w ∈ Ap, and σ = w1−p′ , we estimate the constant C2.∫
I

M(σχI)p w(dx) . ‖w‖p′

Ap
σ(I) .

We do so by passing to the stopping cubes S(I), and estimating as below, where we will
use some common manipulations in the Ap theory.∫

I

M(σχI)p w(dx) ≤
∫

I

[ ∑
S∈S(I)

σ(S)
|S|

· χS

]p

w(dx)

.
∑

S∈S(I)

∫
I

[σ(S)
|S|

· χS

]p

w(I) (19)

≤ ‖w‖Ap

∑
S∈S(I)

σ(S) (20)

. ‖w‖Ap
‖σ‖Ap′σ(I) (21)

= ‖w‖p′

Ap
σ(I) . (22)

This proves our estimate. Here, we have taken these steps.

(19) Pointwise, the sum
∑

S∈S(I)
σ(S)
|S| · χS(x) is super-geometric, so comparable to its

maximal term in the summand. This allows us to move the pth power inside the
sum.

(20) We are using the definition of Ap here.
(21) The A∞ property is decisive. By (17) and (14), we have, using the notation for the

stopping children from Definition 16,
∑

I′∈C(I) σ(I) ≤ (1−c‖σ‖−1
Ap′

)σ(I), permitting
us to sum a geometric series to get this estimate.

(22) By inspection, ‖σ‖Ap′ = ‖w‖p′−1
Ap

.

4.2. Random Dyadic Grids, Good and Bad Cubes. We are used to thinking of a
dyadic grid as being canonical, namely the cubes

D :=
{
2k(n + [0, 1)d) : k ∈ Z , n ∈ Zd

}
.
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This choice has a strong edge effect, it for instance distinguishes the origin, in that it
is the vertex of infinitely many cubes. This sort of anomaly on the other hand should
be typically rare. Quantifying this is achieved by a random grid. To present one typical
example, if G is a dyadic grid, and the interval [0, 1)d is in G, it has one 2d possible
parents, found by taking the cube to be the product of one of the two intervals [0, 2)
and [−1, 1) in each coordinate separately. To randomize G, these possible choices of grids
should be equally likely.

For any β = {βl} ∈ β :=
{
{0, 1}d

}Z, and cube I, set

I+̇β = I +
∑

l<`(I)

βl2−l , (23)

where `(I) := |I|1/d is the side length of the cube. Then, define the dyadic grid Dβ to
be the collection of cubes Dβ = {I+̇β : I ∈ D}. This parametrization of dyadic grids
appears explicitly in [13], and implicitly in [35, section 9.1].

Place the uniform probability measure P on the space β. Namely, the probability
that any coordinate βj takes any one value in {0, 1}d is 2−d, and the coordinates βj are
independent of one another.

Let us see how the randomization affects the edge effect mentioned above. Let 0 <

γ < 1 be a fixed parameter, and r ∈ Z+ is a fixed integer. We say that a pair of intervals
(I, J) ∈ Dβ are good if the smaller interval, say I, satisfies 2r`(I) < `(J), and

dist(I, ∂J) ≥ `(I)γ`(J)1−γ .

And an interval I is said to be good, if for all intervals J with `(J) > 2r`(I), we have
that the pair (I, J) is good. Otherwise, we say that the cube is bad.

An important property of goodness is the independence of the location or scale of
a cube I and its goodness. Take I+̇β ∈ Dβ . The spatial position of I is given by the
formula (23), which only depends upon βj for 2−j < `(I). And, for a larger cube J , the
position of J can be written as

J +
∑

j : 2−j<`(I)

2−jβj +
∑

j : `(I)≤2−j<`(J)

2−jβj .

And hence, the position of J relative to I depends only on the coordinates βj for `(I) ≤
2−j < `(J), and hence is independent of the location of I.

As a consequence the probability of a given cube is bad is independent of the location
or scale of I. Denoting this probability by πr,γ , it is an elementary exercise to see that
πr,γ . 2−rγ . As it will turn out, it will be sufficient to have this probability less than
one, for a choice of γ that depends upon the Calderón–Zygmund Operator T , and can
be taken to be a small multiple of the constant δ in the Definition 3.

4.3. Haar Shifts, Dyadic Calderón–Zygmund Operators. In one dimension, the
Martingale Difference in (15) is given by the rank-one projection ∆If = 〈f, hI〉 ·hI where
hI is the Haar function, given by hI := (−χI− + χI+)|I|−1/2, where I± denotes the two
children of I. And then, the simplest possible dyadic Calderón–Zygmund operator would
be a martingale transform

Tf :=
∑

I

εI〈f, hI〉 · hI .
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The amenability of these operators to issues of measurability, and stopping time argu-
ments has long been exploited, leading to a remarkable set of properties that are known
for these objects.

Below, we will say that martingale transforms have complexity 1. To motivate this up-
coming definition, let us recall the remarkable result of Stephanie Petermichl, concerning
the Hilbert transform. In one dimension, consider the dual to the classical Haar function
given by gI = (−hI− + hI+)/

√
2, and the special operator given by

Uf = Uβf :=
∑

I∈Dβ

〈f, gI〉 · hI .

The Hilbert transform can be recovered from the operators Uβ , namely the result below
holds.

Theorem 24. Let Dilδf(x) = f(x/δ). For non-zero constant c, we have

Eβ

∫ 2

1

DilδUβDil1/δ
dδ

δ
= cH

Here, the expectation is taken over β ∈ β.

The Hilbert transform is distinguished by different properties, including being L2-
bounded, translation and dilation invariant, and (formally) satisfying H(cos) = c · sin.
By inspection, Uβ is L2-bounded. The averaging procedure above provides translation
invariance, and dilation invariance, as we have used the Haar measure for the dilation
group in the average. For the last property, note that gI is a localized cosine, while h is
a localized sinus. We refer the reader to [41, 13] for a precise proof of this Theorem.

The import of this result is that in situations where there is a translational and dila-
tional invariance, one can prove results about the Hilbert transform by considering the
much simpler operators U – where tail behavior is no longer an issue. Similar representa-
tions are available for other distinguished convolution kernels. For instance, the Beurling
operator [8] can be recovered from martingale transforms, while the Riesz transforms are
closer to the Hilbert transform [42]. The most general result known in this direction is
[54], which shows that all smooth, odd one dimensional Calderón–Zygmund kernels can
be obtained by a variant of Stephanie Petermichl’s method.

A more general definition is as follows. In higher dimensions, we mention that the
martingale differences are finite rank projections, but there is no canonical choice of the
Haar functions in this case. Below, by Haar function we will a function hI , supported on
I, constant on its children, and orthogonal to χI (and no assumption on normalizations).
And, by a generalized Haar function as a function hI which is a linear combination of χI ,
and {χI′ : I ′ ∈ Child(I)}. Such a function supported on I but need not be orthogonal
to constants.

Definition 25. For integers (m,n) ∈ Z2
+, we say that linear operator S is a (generalized)

Haar shift operator of parameters (m,n) if

Sf(x) =
∑
I∈D

∑(m,n)

I′,J ′∈D
I′,J ′⊂I

〈f, hI′

J′〉
|I|

hJ′

I′
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where (1) in the second sum, the superscript (m,n) on the sum means that in addition we
require `(I ′) = 2−m`(I) and `(J ′) = 2−n`(I), and (2) the function hI′

J′ is a (generalized)
Haar function on J ′, and hJ′

I′ is one on I ′, with the joint normalization that

‖hI′

J′‖∞‖hJ′

I′ ‖∞ ≤ 1 . (26)

In particular, this means that we have the representation

Sf(x) =
∑
I∈D

|I|−1

∫
I

f(y)sI(x, y) dy (27)

where sI(x, y) is supported on I × I, with L∞ norm at most one. We say that the
complexity of S is max(m,n).

These are dyadic variants of Calderón–Zygmund operators. Note in particular that
(26) is analogous to (4), while the ‘smoothness’ criteria is replaced by the parameters
(m,n). Consider a Haar shift operator. It is an L2-bounded operator, in particular its
norm is at most one. The situation for generalized shifts is far more subtle, and here, we
should single out the following definition, for it distinguished role in the theory, though
not necessarily this paper. We call an operator S a paraproduct if it is a generalized Haar
shift of parameters (0, 1) or (1, 0). To be specific, it, or its dual, is of the form

Sf =
∑
I∈D

EIf · hI (28)

where hI is a Haar function. A fundamental fact here is the following special case of the
T1 Theorem, in the dyadic case.

Theorem 29. Let S be as in (28). Then, S is L2-bounded if and only if we have

‖SχI‖2 . |I|1/2 .

This is a particular variant of the famous Carleson Embedding Theorem, and the
main step in extending the David Journé T1 Theorem to the dyadic setting.

More generally, we have the following quantitative form of the Dyadic T1 Theorem.

Theorem 30. Let S be a generalized Haar shift operator of complexity µ. Then S extends
to a bounded operator on L2(Rd) if and only if we have, uniformly over cubes I,∫

I

|SχI |2 dx ≤ S2|I| ,∫
I

|S∗χI |2 dx ≤ S2|I| ,

Moreover, we have ‖S‖2 7→2 . µS + µ2.

There are two points to make here. The first is that there is a weak dependence of
the norm of the operator as a function of the complexity µ. The second, is the familiar,
but not mentioned to this point, feature of the Calderón–Zygmund theory, that the
operators have strong features. If S is a bounded operator, then, the sum in (27) is
unconditional in I. The import of this feature, important for proof of the main Theorem,
is that decompositions of dyadic cubes lead immediately to decompositions of operators.
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In the second, an L2-bounded Calderón–Zygmund operator is necessarily bounded on
many other spaces. Of particular interest for us is the endpoint estimate for L1:

Theorem 31. Let S be a dyadic shift operator of complexity µ, which is bounded on
L2(Rd). Then, we have the estimate

sup
λ>0

λ|{Sf > λ}| . {(1 + ‖S‖2 7→2)2 + µ}‖f‖1 . (32)

This is a well-known principle, but the weak-dependence on the complexity is a new
feature, see [17, Theorem 5.2].

4.4. A Weighted Version of the Dyadic T1 Theorem. A crucial step is to prove
a weighted version of the T1 Theorem, one that holds for general weights. To emphasize
this point, for a pair of weights (w, σ), which are not necessarily related, we set the two
weight A2 condition to be

‖w, σ‖A2 := sup
I∈D

w(I)
|I|

σ(I)
|I|

.

We have this variant of the T1 Theorem, for generalized Haar shift operators, in the
weighted setting.

Theorem 33. Let S be a generalized Haar shift operator of complexity µ, and (w, σ) a
pair of weights. We have ‖S(σf)‖L2(w) ≤ C‖f‖σ, where

C .d µS + µ2‖w, σ‖1/2
A2∫

I

S(σχI)2 w(dx) ≤ S2σ(I) ,∫
I

S∗(wχI)2 σ(dx) ≤ S2w(I) ,

Here, we are considering the weighted inequality in its natural form, see (9). And we
are bounding the weighted norm of the Haar shift in terms of the two-weight A2 condition,
as well as the testing condition. Of particular importance for the proof of the linear bound
is the very weak dependence of the constants on the A2 characteristic. For the proof, see
[37] and for the quantitative estimate above [17, Theorem 3.4]. In particular, the proof
is a weighted variant of the usual proof of the dyadic T1 Theorem, with an important
point being that one should use weighted Haar functions to give the proof.

5. The Random BCR Algorithm. A proof of the T1 Theorem must, implicitly, or
explicitly, decompose the Calderón–Zygmund operator into appropriate components. In
the language of random dyadic shifts, the remarkable result of [17, Theorem 4.1] is

Theorem 34. Let T be a Calderón–Zygmund Operator T with smoothness parameter δ.
Then, we can write

T = CEβ

∑
(m,n)∈Z2

+

2−(m+n)δ/2Sβ
m,n (35)

where (a) the expectation is taken over the space of random dyadic grid; Sm,n is a (ran-
dom) dyadic shift; (c) the shifts of parameters (0, 1) and (1, 0) are generalized shifts; (d)
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all other shifts need not be generalized; (e) the constant C is a function of T , and the
smoothness parameter δ. In particular, we will have, uniformly over the probability space,

‖Sβ
m,n‖2 7→2 . 1 .

The focus with Theorem 24 is noteworthy. The prior result obtains the Hilbert trans-
form as a convex combination of Haar shifts of bounded complexity. The Theorem above
obtains it as a sum of Haar shifts, but one that is rapidly converging in complexity.

In the dyadic setting, similar results were proved by Figiel [11], and independently by
[1], with the latter article being broadly influential. The method of expanding Calderón–
Zygmund operators using this method reveals subtle approximation theory properties of
these operators. This method is not random, but has the disadvantage of using operators
which are not purely dyadic.

Indeed, the Theorem above looks wrong. Using standard Haar basis in one dimension,
the inner product 〈Hh[0,1], h[0,2k)〉 does not have the good decay properties in terms of
complexity claimed above. Instead, one needs a concept like the goodness property of
§4.2. And indeed, this is the main point, the inner product 〈HhI , hJ〉 will be small, if the
pair of intervals (I, J) are good.

6. The Corona and the Linear Bound. In the prior proofs of the linear bound for
operators, one used the averaging technique of Petermichl, see Theorem 24, to represent
the Calderón–Zygmund operator as an average of Haar shifts of bounded complexity.
And then, verified the linear bound for such shifts. But, the representation (35) gives
one another option. For an A2 weight, and an arbitrary Haar shift operator S, verify the
linear bound, with only moderate growth in the complexity µ of the Haar shift. Here, we
can allow any polynomial dependence on the complexity. We have already described this
in two different places, the first is the dyadic two-weight T1 Theorem, Theorem 33, and
the second is the weak-L1 inequality, (32).

The relevant result is [17, Equation (5.5)].

Theorem 36. Let S be a generalized Haar shift operator of complexity µ, and S =
‖S‖2 7→2. For w ∈ A2 and σ = w−1, and cube I, we have[∫

I

|SσχI |2 w(dx)
]1/2

. (µ + 1)(S + µ + 1)‖w‖A2σ(I)1/2 .

The method of proof here, aside from the dependence on the complexity, is derived
from [22], and is a subtle extension of the method used to prove (12), the sharp dependence
on the Ap characteristic for the Maximal Function. Indeed, the interested reader should
first consult [22], which does not seek to track dependence of the bound on the constants.
This argument uses the stopping cubes, as given in Definition 16. And, this decomposition
is then used to decompose the operator. Then, the main step is to identifies a notable
extension of the John–Nirenberg inequalities that holds in the two-weight setting, for the
decomposed operator. With this, we conclude our discussion of the proof of the linear
bound for Calderón–Zygmund operators.

7. History
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7.1. The weighted theory came of age with the paper [12] of Hunt–Muckenhoupt–
Wheeden, showing that for non-negative weight w, the Hilbert transform is bounded
on L2(w) if and only if w ∈ A2. Still, early proofs combined properties of the weight,
including the A∞ property we have used, with the Reverse Hölder inequality, and the
good-lambda technique, to deliver estimates for the norm of the Hilbert transform of
the order of ‖w‖2

A2
. These and the other comments about history reflect the authors’

knowledge, but as he was not a participant in the development of the subject, they will
certainly be incomplete. Apologies for omissions and gaps are extended in advance.

7.2. The rapid development of the Ap theory in the 1970’s lent some credence to the
thought that similar variants of the Ap condition could be used to characterize the two-
weight inequalities as well. The characterization for the Hardy operator [33] confirmed
this. It was a surprise when Sawyer [49] showed that such conditions cannot be used for
the Maximal Function, instead one must use the testing conditions in (18). (For a little
more detail, consult the counterexample discussed in Sawyer’s paper.)

7.3. In the two-weight setting, the Hardy operator is somehow the easiest to study, the
Maximal Function is the next step harder, then the fractional integrals, and finally the
singular integrals. It took several years for the proof of the two-weight inequalities for
the fractional integrals to be characterized. Sawyer gave the characterization in the T1
language in [50]. This was contemporaneous with the David–Journé T1 Theorem, but
the connection was not widely appreciated until much later, especially by the work of
Nazarov–Treil–Volberg. For history on this last point, see [55].

7.4. In the two-weight setting, one can have the fractional integral operators mapping
Lp into Lp, indeed this is the hard case. In the case of Lp being mapped into Lq, there is
a second characterization due to [18], also see [19, Chapter 3], and [51]. This characteri-
zation can be used to prove the sharp Ap,q bound for the fractional integrals on Rd, see
[21].

7.5. The paper of Sawyer–Wheeden [51] extends the two-weight inequality for the frac-
tional integrals to homogeneous spaces; this is an interesting direction, which has been,
and will be, explored in many different directions.

7.6. The question of the sharp dependence of the norm estimates of different operators,
in terms of the Ap characteristic was specifically raised by Buckley [3], where the estimate
(12) was proved. These bounds for the Maximal Function, together with the Rubio de
Francia extrapolation technique leads to an important simplification of the analysis of
many of the weighted inequalities. Namely, as is demonstrated in [9], identifying a sharp
exponent in Ap characteristic for a single distinguished choice of p can prove the entire
range of inequalities. For the Calderón–Zygmund operators, this index is p = 2.

7.7. In a different direction, Fefferman and Pipher [10] recognized the interest of this
question, for singular integrals, with the weights w ∈ A1. Wittwer [56] proved the linear
bound for A2 weights, for martingale transforms. Petermichl and Volberg [45] showed the
same for the Beurling operator, proving a conjecture of Astala on quasi-conformal maps
as a consequence. Much later, a certain two-weight inequality for the Beurling operator
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was proved [23] as a crucial step in proving another conjecture of Astala. These exam-
ples motivate in part the interest in such questions. Other motivations are derived from
considerations in spectral theory [20], operator theory [39], and orthogonal polynomials
[40].

7.8. It was an important breakthrough when Stefanie Petermichl proved the linear
bound for the Hilbert transform [43]. This technique was based on the one hand, the
representation of the Hilbert transform as an operator of complexity one, and on the other
on the Bellman function method. The latter, deep, technique could require substantive
modification if the Haar shift changes; these modifications were spelled out for the Riesz
transforms in [44], and dyadic paraproducts [2].

7.9. An inequality used in some of these developments was the so-called bilinear em-
bedding inequality of Nazarov–Treil–Volberg, [38]. The latter is a deep extension of the
(weighted) Carleson embedding inequality to a two-weight setting. This inequality can
also be interpreted in the language of fractional integrals, and the Sawyer method can be
used to prove it, and extend it to other Lp settings [24], as well as vector-valued settings
[52].

7.10. Andrei Lerner [28] devised a remarkable inequality, giving pointwise control of a
function in terms of a sum of local oscillations. This inequality can be used to provide
equally remarkable proofs of the sharp Ap inequalities for dyadic Calderón–Zygmund
operators [5, 6], even in certain vector-valued situations. As of yet, it is not understood
how to use this method on continuous Calderón–Zygmund operators.

7.11. Commutators of the form [T,Mb] are of interest, for instance, the Calderón Com-
mutator can be written in this form. And the paper of Chung–Pereyra–Pérez [4] gives a
complete discussion of this question in the setting of Ap weights. The two-weight variants
appear to be largely open.

7.12. Lerner conjectured that the Littlewood–Paley Square function would have a dif-
ferent behavior in terms of its Ap characteristic. Namely, the case of p = 3 was the
critical index, and the power on the Ap-characteristic was 1/2. He used his ‘local oscilla-
tion’ inequality, as well as other considerations, to prove this inequality in full generality
[29].

7.13. The paper [22] proved the A2 linear bound for all Haar shifts, using a Corona
decomposition that has been useful to the complete resolution of the Conjecture. The
technique is obtaining a natural Corona decomposition in order to verify the testing
conditions. This paper gave a rather poor dependence in terms of the complexity of the
Haar shift parameter, but the role of complexity was only brought to the fore in [14].

7.14. Pérez–Treil–Volberg used the full strength of the non-homogeneous Harmonic
analysis, and in particular the innovative paper [36], to prove a remarkable extension of
the T1 Theorem to the A2 setting. Loosely, an operator T with a Calderón–Zygmund
kernel, then T extends to a bounded operator on L2(w), w ∈ A2, if and only if the test-
ing conditions of Theorem 33 hold. Then, it was shown [16] that the linear bound holds
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for Calderón–Zygmund operators with sufficiently smooth kernels. This proof used the
Belykin–Coifman–Roklin [1] decomposition, and the method of [22] to verify the testing
conditions. A short time later, Hytönen [14], used a random variant of the Belykin–
Coifman–Roklin method to give a proof of the linear bound for arbitrary smoothness,
again using the A2 T1 Theorem of [36]. This proof of the full conjecture was then stream-
lined in [17], giving the line of argument we have followed in this survey.

7.15. Lerner has conjectured that the weak-type bound on Calderón–Zygmund oper-
ators should obey the linear bound in Ap for all 1 < p < ∞. This has been verified
for dyadic Calderón–Zygmund operators, without careful attention to behavior of the
exponents in terms of complexity [15], and for the smooth case, with enough derivatives,
in [16]. The principal technique is again derived from [22], as well as a (simple) testing
condition for the weak-type inequality for singular integrals given in [25], also see [26].
Indeed, this argument proves the linear bound in Ap for the maximal truncations of sin-
gular integrals, as this is the kind of operator that we have the testing conditions for. It
seems likely that this conjecture would follow from Theorem 34, if one tracks complexity
constants.

7.16. The endpoint case of these estimates is also of interest, namely, for p = 1. It is
an elementary consequence of a covering lemma argument that for an arbitrary weight
w, the Maximal Function M maps L1(Mw) into L1,∞(w). It was then the subject of
conjecture if the same inequality holds for singular integrals. This was disproved for Haar
multipliers by Maria Reguera [46], and then for the Hilbert transform by Reguera–Thiele
[47].

7.17. With the failure of the most optimistic form of the conjecture above, one can then
ask if its natural variant for w ∈ A1 holds. Namely, does the Hilbert transform map L1(w)
into L1,∞(w) for w ∈ A1, with norm estimate dominated by a constant times ‖w‖A1?
This also fails in the dyadic case [34]. On the other hand, the Hilbert transform does map
L1(w) into L1,∞(w), and the best known upper bound on the norm is ‖w‖A1 log+‖w‖A1 .
See [31] for more information on these last two points.

7.18. A interesting part of the linear bound in A2 is that one needs a substantive portion
of two-weight theory to address it. This is Theorem 33 above. The general two-weight
question is a rather intricate one, with a full discussion carrying us beyond the scope of
this text. The interested reader should consult [55] for a general introduction, and the
more recent papers [26, 25, 27, 36].
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