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Abstract. Let (€, 3, 1) be a finite measure space and let X be a real Banach space. Let L¥(X)
be the Orlicz-Bochner space defined by a Young function ®. We study the relationships between
Dunford-Pettis operators T from L* (X) to a Banach space Y and the compactness properties
of the operators T restricted to L®(X). In particular, it is shown that if X is a reflexive
Banach space, then a bounded linear operator T : L'(X) — Y is Dunford-Pettis if and only if
T restricted to L=(X) is (7(L°(X), L*(X*)), |l - ||yv)-compact.

1. Introduction and preliminaries.. Recall that a bounded linear operator 7' between two
Banach spaces is a Dunford-Pettis operator if T' maps weakly convergent sequences onto norm
convergent sequences. J. Bourgain [B, Proposition 1] showed that a bounded linear operator T'
from L' to a Banach space Y is a Dunford-Pettis operator if and only if T restricted to LP
for some p € (1,00] is compact. The purpose of this paper is to extend and strengthen this
result for operators defined on the space of Bochner integrable functions L'(X). We study the
relationships between Dunford-Pettis operators T : L' (X) — Y and the compactness properties
of T restricted to Orlicz-Bochner spaces LT (X) (see Theorem 2.1, Theorem 2.3 and Corollary
2.5 below).

We denote by o(L, K) the weak topology on L with respect to the dual pair (L, K). Let
(L,&) and (M,n) be Hausdorff locally convex spaces. Recall that a linear operator S : L — M
is (&,m)-compact if there exists a neighbourhood U of 0 for £ such that S(U) is a relatively
compact set in (M,n). By Bd(L,¢) we denote the collection of all &bounded sets in L.
Moreover, (L,&)* stands for the topological dual of (L,£).

For terminology and basic properties concerning Banach function spaces we refer to [KA].
Now we recall terminology concerning Orlicz space (see [Lu], [RR] for more details). From now
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we assume that (€, 3, i) is a finite measure space. By a Young function we mean here a non-zero
convex, left continuous function @ : [0,00) — [0, 00] that is vanishing and continuous at 0. We
say that ® jumps to infinity, if ®({) = co for all ¢t > ¢y > 0.

The Orlicz space L® = {u € L° : [, ®(A|u(w)|)dp < oo for some A > 0} can be equipped
with the complete Riesz norm:

Jule = inf (3> 0: [ @(uw) /A dp < 1.

Then L% is a perfect Banach function space and L> ¢ L® ¢ L*, where the inclusion maps
are continuous. Moreover, the Kothe dual (LCP)' of L% is equal to the Orlicz space Lq’*, where
®* stands for the Young function complementary to ® in the sense of Young. The associated
norm ||-|[3. on L®" (called the Orlicz norm) can be defined by

I ||¢*fsup{/ (w)o(w) dp s u € L? ||u\|q,g1}.

Note that if lim:— o @ = 00, then L® G L' and

L ¢ (L"), = E* = {v eL®: / D(Av(w)]) dp < oo for all A > O}.
Q

In particular, if ® jumps to infinity, then L® = L. If lim; .o @ < oo, then L* = L*
and L® = L.

From now on we assume that (X, ||-||x) and (Y,||-|ly) are real Banach spaces and X™*, Y*
denote their Banach duals. By LO(X ) we denote the set of u-equivalence classes of all strongly
Y-measurable functions f:Q — X.

For f€ L%X) let f(w)=|f(w)|x for w € Q. Then the space

L*(X)={f e L(X): feL"}
provided with the norm || f|lpex) == [flle is a Banach space and is usually called an Orlicz-
Bochner space (see [CM], [L], [RR] for more details).

Now we recall terminology and basic results concerning duality of the spaces L% (X) (see

[Bui], [Bug]). A linear functional F on L®(X) is said to be order continuous if F(fa) — 0

whenever fo, ). 0 in L®. The set of all order continuous functionals on L®(X) will be denoted
by L?(X)y and called the order continuous dual of L*(X). Then L®(X)* = L®(X)y if ®
satisfies the so called Ag-condition, i.e., limsup,_, . q)((t)> < 00. Due to Bukhvalov (see [Bui],

[Bug]) if X* has the Radon-Nikodym property (in particular, X is reflexive), then LT (X)y
can be identified with L®™ (X*) throughout the mapping: L (X*) 3 g — F, € L*(X);7, where

Fy(f) = /Q (F(@).g(@))dp for all € L*(X).

Note that L'(X)y = L' (X)* = {F, : g € L>(X*)} if X is reflexive.

For a subset H of L®(X) let H={f: f € H}. By Bre(x), (resp. Bpe) we will denote
closed unit ball in (L*(X),]| - lLe(x)) (resp. (L%,] - ||)). Then EL@Q() = Bs.

The following characterization of relative o(L®(X), L®(X)y)-compactness in L®(X) will
be of importance (see [Ny, Theorem 2.7, Proposition 2.1]).

PROPOSITION 1.1. Assume that X is a reflexive Banach space and ® is a Young function. Then
for a subset H of L*(X) the following statements are equaivalent:

() H is relatively o(L*(X),L* (X*))-compact.

(i) H is relatively o(L®, L®")-compact.
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(i) The functional pg on L*" defined by pi(v) = sup, .z [q lu(w)v(w)|dy is an order
continuous seminorm.

2. Dunford-Pettis operators on L'(X). We study the relationships between Dunford- Pet-
tis operators T : L'(X) — Y and the compactness properties of the operator T restricted to
L*(X). Note that a bounded linear operator T : L'(X) — Y is a Dunford-Pettis operator if
and only if T' maps relatively weakly compact sets in Ll(X ) onto relatively norm compact sets
in Y (see [AB, § 19]).

Let ig : L¥(X) — L'(X) stand for the inclusion map.
THEOREM 2.1. Let T : L*(X) — Y be a bounded linear operator. Assume that ® is Young

function and let T ois : L*(X) — Y be a (|- |ls,| - |lv)-compact operator. Then T is a
Dunford-Pettis operator.

Proof. We see that T(Bpe(x)) is relatively compact in (Y,| - [ly). Let H be a relatively
o(LY(X), L' (X)*)-compact subset of L'(X). To show that T'(H) is relatively compact in

(Y, ]| - |ly) it is enough to show in view of [D, p. 5], that for every € > 0 there exists a relatively
compact subset K. of (Y,| - |y) such that

T(H) C eBy + K..

where By is a closed unite ball in Y. Note that the set H is uniformly integrable in L' (see
[DU, Theorem 4, p. 104]). For f € L*(X) and A >0 let
Ay ={weQ: f(w) > A}
Then
lim sup f(w)dp = lim sup [[1a,x fllL1(x)=0.
A— 00 feH Af,A A—o00 feH

Let € > 0 be given. Then there exists A. > 0 such that for each f € H we have
€
Laga fllzo < 5o
roe Tle0 =
Hence for f € H we get
[T ag s, DIy SNTH-1ap s, Fllrx) <e
Moreover, 1o a; ,_ (W) f(w) < A for w e, so lowa,,. fel™(X)C L*(X). Since
lhllzex) < allhl|Lo(x) for some a >0 and all h € L=(X), we get
||1Q\Af,)\€ ! HL‘I’(X) <al..
Hence
T(f)=TAasx.f)+T(Aowa,,. f) €eBy +al-T(Bre(x))-

This means that the set T'(H) is relatively compact in (Y,]| - ||y), as desired. m

From now we assume that ® is a Young function such that lim;_ . @ = 00. Let 73 be

the topology on L®(X) generated by the norm || - e x) on L®(X), and let 7Ty stand for the
complete F-norm || - || o(x)-topology on L°(X) that generates convergence in measure. Then
’L@<X)] (briefly, yo) on LT (X) is the finest Hausdorff locally convex
topology on L®(X) which agrees with 76|L¢(X) on |||l e (x)-bounded subsets of LEP(X) (see
[W, 2.2.2], [F1, Theorem 3.3]). Moreover, we have (see [F2, Proposition 2.1]):

(2.1) BA(L®(X),ve) = BA(L®(X), || - [l12 (x))-

the mixed topology v[7s, 7o
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This means that (L%(X),~s) is a generalized DF-space (see [Ru, Definition 1.1]).

It is known that a linear operator T': L*(X) — Y is (ya, ||- ||v)-continuous if and only if T
is (ve, || - [lv)-linear, i.e., [T(fa)lly — O whenever |fullzox) — 0 and sup, [|fnllex) < 00
(see [W, Theorem 2.6.1 (iii)], [F2, Proposition 2.3]).

We shall need the following lemma.

LEMMA 2.2. Assume that ® is a Young function such that limi_ ﬁ =o00 and X is a
reflexive Banach space. Then i : L*(X) — L*(X) isa (||- lee(x), o(L ( ), LY (X)*))-compact
operator.

Proof. To show that Bre(x) is a relatively (LY (X), L' (X)*)-compact subset of L'(X), in
view of Proposition 1.1 it is enough to show that B;e is relatively o(L', L°)-compact in L*,
that is, the seminorm on L*° defined by

PB, e (V) == sup / |u(w)v(w)| du
ueBLq>
is order continuous. Indeed, note that ps, , (v) = 9. for v € L, where L= ¢ E*" = (L*"),.

Thus the proof is complete. =m
Now we are ready to proof our main result.

THEOREM 2.3. Assume that ® is a Young function such that lim;_ o @ =00 and X s a
reflexive Banach space. Let T : L'(X) — Y be a Dunford-Pettis operator. Then the operator
Toie: L*(X) =Y is (va,| - ||v)-compact.

Proof. Since X is supposed to be reflexive, in view of [F1, Theorem 3.2] we have
(L¥(X),7e)" = {Fy: g€ EY (X")}.

First, we shall show that T ois : L*(X) — Y is (ya,| - ||y)-linear. Indeed, let (f.) be
a sequence in L*(X) such that ||fnllrox) — 0 and sup, lfallpe(x)y < oo. Then fn — 0
for va (see [F1, Theorem 3.1]), and it follows that f, — 0 for o(L®(X), E*" (X*)) because
o(L®(X), E® (X*)) C vs. Hence f, — 0 for o(L'(X), L*(X)*) because o(L'(X),L*(X)*) =
o(LY(X), L®(X*)) and L®(X) ¢ L}(X) and L=(X*) c E®"(X*). Since T is a Dunford-Pettis
operator, we get ||T(f»)|ly — 0. This means that T ois is (vre(x),| - [[v)-continuous.

By Lemma 2.2 the mapping T ois is (|| - [pe(x), | - [[v')-compact. Hence, in view of (2.1)
T oig transforms ~ye-bounded sets in L (X) onto relatively || - ||y-compact sets in Y. Making
use of [Ru, Theorem 3.1] we conclude that T ois is (va, || - ||y )-compact, as desired. m

As an application of Theorem 2.1 and Theorem 2.3 we get:

COROLLARY 2.4. Assume that ® is a Young function such that lim;_ o ? =00 and X is
a reflexive Banach space. Then for a bounded linear operator T : L*(X) — Y the following
statements are equivalent:

(i) T is a Dunford-Pettis operator.

(i) Tois:L¥(X) =Y is (va,]| - |lv)-compact.
(ili) Toia: L*(X) =Y is (|- lLex), || - v)-compact.

In particular, if X is reflexive, then the mixed topology v on L*(X) coincides with
the Mackey topology 7(L>(X),L'(X*)) (see [N2, Corollary 4.4]). Hence, as a consequence of
Corollary 2.4 we get:
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COROLLARY 2.5. Assume that X is a reflerive Banach space. Then for a bounded linear operator

T:LY(X) =Y the following statements are equivalent:
(i) T is a Dunford-Pettis operator.

(ii

(iii

)
)

[AB]
(B]
[Bui]

[Buz]

W]

T 0o : L®(X) =Y s (1(L=(X), LY (X)), | - |lv)-compact.
T oo : L=(X) =Y is (|| - ||Loo(x), || - |v)-compact.
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