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Abstract. We will generalize and improve the results of T. Singh [Degree of approximation

to functions in a normed spaces, Publ. Math. Debrecen, 40/3-4, (1992), 261-271] obtaining the

L. Leindler type estimates from [On the degree of approximation of continuous functions, Acta

Math. Hungar., 104 (1-2), (2004), 105-113].

1. Introduction. Let f be a continuous and 2π-periodic function and let

f (x) ∼ a0

2
+

∞∑
n=1

(an cos nx + bn sin nx) (1.1)

be its Fourier series. Denote by Sn (x) = Sn (f, x) the n-th partial sum of (1.1) and by
ω (f, δ) the modulus of continuity of f ∈ C2π.

The usual supremum norm will be denoted by ‖·‖C .

Let ω be a nondecreasing continuous function on the interval [0, 2π] having the prop-
erties

ω (0) = 0, ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) .

Such function will be called modulus of continuity.
Denote by Hω the class of functions

Hω := {f ∈ C2π; |f (x)− f (y)| ≤ Cω (|x− y|)} ,

where C is a positive constant. For f ∈ Hω, we define the norm ‖·‖ω by the formula

‖f‖ω := ‖f‖C + sup
x, y

|∆ωf (x, y)| ,
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where

∆ωf (x, y) =
|f (x)− f (y)|

ω (|x− y|)
, x 6= y

and ∆0f (x, y) = 0. If ω (t) = C1 |t|α (0 < α ≤ 1), where C1 is a positive constants, then

Hα = {f ∈ C2π; |f (x)− f (y)| ≤ C1 |x− y|α , 0 < α ≤ 1}

is a Banach space and the metric induced by the norm ‖·‖α on Hα is said to be a Hölder
metric.

Let A := (ank) (k, n = 0, 1, ...) be a lower triangular infinite matrix of real numbers
satisfying the following condition:

ank ≥ 0 (k, n = 0, 1, ...) , ank = 0, k > n and
n∑

k=0

ank = 1, (1.2)

Let the A−transformation of (Sn (f ; x)) be given by

Tn (f) := Tn (f ; x) :=
n∑

k=0

ankSk (f ; x) (n = 0, 1, ...) . (1.3)

Now, we define two classes of sequences (see [3]).
A sequence c := (cn) of nonnegative numbers tending to zero is called the Rest

Bounded Variation Sequence, or briefly c ∈ RBV S, if it has the property
∞∑

k=m

|cn − cn+1| ≤ K (c) cm (1.4)

for all natural numbers m, where K (c) is a constant depending only on c.
A sequence c := (cn) of nonnegative numbers will be called the Head Bounded Vari-

ation Sequence, or briefly c ∈ HBV S, if it has the property
m−1∑
k=0

|cn − cn+1| ≤ K (c) cm (1.5)

for all natural numbers m, or only for all m ≤ N if the sequence c has only finite number
ofnonzero terms and the last nonzero term is cN .

Therefore we assume that the sequence (K (αn))∞n=0 is bounded, that is, that there
exists a constant K such that

0 ≤ K (αn) ≤ K

holds for all n, where K (αn) denote the sequence of constants appearing in the inequal-
ities (1.4) or (1.5) for the sequence αn := (ank)∞k=0. Now, we can give the conditions to
be used later on. We assume that for all n and 0 ≤ m ≤ n

∞∑
k=m

|ank − ank+1| ≤ Kanm (1.6)

and
m−1∑
k=0

|ank − ank+1| ≤ Kanm (1.7)
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hold if αn := (ank)∞k=0 belongs to RBV S or HBV S, respectively.
Let ω and ω∗ be two given moduli of continuity satisfying the following condition (for

0 ≤ p < q ≤ 1):
(ω (t))

p
q

ω∗ (t)
= O (1) (t → 0+) . (1.8)

In [4] R. Mohapatra and P. Chandra obtained some results on degree of approximation
by the means (1.3) in the Hölder metric. Recently, T. Singh in [5] established the following
two theorems generalizing of some results of P. Chandra [1] with a mediate function H

such that:
π∫

u

ω (f ; t)
t2

dt = O (H (u)) (u → 0+) , H (t) ≥ 0 (1.9)

and
t∫

0

H (u) du = O (tH (t)) (t → O+) . (1.10)

theorem 1.1 [5] Let A = (ank) satisfy the condition (1.2) and ank ≤ ank+1

(k = 0, 1, ..., n− 1; n = 0, 1, ...). Then for f ∈ Hω, 0 ≤ p < q ≤ 1

‖Tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{(

H
(π

n

))1− p
q

ann

(
n

p
q + a

− p
q

nn

)}]
+ O

(
annH

(π

n

))
, (1.11)

if ω (t) satisfies (1.9) and (1.10), and

‖Tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

]
×

{(
ω

(π

n

))1− p
q

+ annn
p
q

(
H

(π

n

))1− p
q

}
+ O

{
ω

(π

n

)
+ annH

(π

n

)}
, (1.12)

if ω (t) satisfies (1.9).

theorem 1.2 [5] Let A = (ank) satisfy the condition (1.2) and ank ≤ ank+1

(k = 0, 1, ..., n− 1; n = 0, 1, ...) and let ω (f ; t) satisfies (1.9) and (1.10). Then for f ∈
Hω, 0 ≤ p < q ≤ 1

‖Tn (f)− f‖ω∗ = O
[
{ω (|x− y|)}

p
q {ω∗ (|x− y|)}−1

×
{

(H (an0))1−
p
q an0

(
n

p
q + a

− p
q

n0

)}]
+ O (an0H (an0)) . (1.13)

Another generalization of the results of Chandra [2] was obtained by L. Leindler in
[3]. Namely, he proved following theorems.

theorem 1.3 [3] Let (1.2), (1.7) and (1.9) hold. Then for f ∈ C2π

‖Tn (f)− f‖C = O
(
ω

(π

n

))
+ O

(
annH

(π

n

))
. (1.14)

If, in addition, ω (f ; t) satisfies the condition (1.10) then

‖Tn (f)− f‖C = O (annH (ann)) . (1.15)
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theorem 1.4 [3] Let (1.2), (1.6), (1.9) and (1.10) hold. Then for f ∈ C2π

‖Tn (f)− f‖C = O (an0H (an0)) . (1.16)

In the presented paper we will generalize and improve the results of T. Singh [5]
obtaining the L. Leindler type estimates from [3] in the generalized Hölder metric instead
of the supremum norm.

Throughout the paper we shall use the following notations:

φx (t) = f (x + t) + f (x− t)− 2f (x) ,

Ank =
n∑

r=n−k+1

anr, (k = 1, 2, ..., n + 1) ,

An (u) =
n∑

k=0

ank

sin
(
k + 1

2

)
u

sin 1
2u

.

By K1, K2, . . .we shall designate either an absolute constant or a constant depending on
the indicated parameters, not necessarily the same at each occurrence.

2. Main results. Our main results are the following.

theorem 2.1 Let (1.2), (1.7) and (1.8) hold. Suppose ω (f ; t) satisfies (1.9), then for
f ∈ Hω

‖Tn (f)− f‖ω∗ = O

{
n+1∑
k=1

Ank

k

} p
q {

annH
(π

n

)}1− p
q

 . (2.1)

If, in addition, ω (f ; t) satisfies the condition (1.10), then

‖Tn (f)− f‖ω∗ = O

{
n+1∑
k=1

Ank

k

} p
q

{annH (ann)}1− p
q

 . (2.2)

theorem 2.2 Let (1.2), (1.8), (1.6) and (1.9) hold. Then, for f ∈ Hω

‖Tn (f)− f‖ω∗ = O

({
an0H

(π

n

)}1− p
q

)
. (2.3)

If, in addition, ω (f ; t) satisfies (1.10), then

‖Tn (f)− f‖ω∗ = O
(
{an0H (an0)}1− p

q

)
. (2.4)

remark 2.1 We can observe, that under the condition (1.8), Theorems 1.1 and 1.2
are the corollaries of Theorems 2.1 and 2.2, respectively. The assumption ank ≤ ank+1

(k = 0, 1, ..., n− 1; n = 0, 1, ...) of Theorem 1.1 implies the inequality
n+1∑
k=1

Ank

k
≤ (n + 1) ann,

whence by the Theorem 2.1, we obtain the relation of the (1.11) type. The estimate
(1.13) from Theorem 1.2 are also the consequences of the estimate of Theorem 2.2 and
sometimes are better since (nann) can be bounded.
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remark 2.2 If in the assumptions of the Theorem 2.1 or 2.2 we take ω (|t|) = O (|t|q),
ω∗ (|t|) = O (|t|p) with p = 0, then from (2.1), (2.2) and (2.3), we have the estimations
(1.14), (1.15) and (1.16), respectively.

3. Lemmas. To prove our theorems we need the following lemmas.

lemma 3.1 [2] If (1.9) and (1.10) hold then
r∫

0

ω (f ; t)
t

dt = O (rH (r)) (r → 0+) . (3.1)

lemma 3.2 [7] If (1.7) holds, then for 1
n ≤ u ≤ π

|An (u)| ≤ π2 (K + 1)2 + π

u
An,u−1 , (3.2)

where u−1 := max
{

1,
[
u−1

]}
.

lemma 3.3 [7] If (1.6) holds, then for f ∈ C2π

‖Tn (f)− f‖C ≤ 8 (K + 1) (2K + 1)
n∑

k=0

ankEk (f) , (3.3)

where En (f) denotes the best approximation of function f by trigonometric polynomials
of order at most n.

lemma 3.4 [7] If (1.6) holds, then
π∫

0

|An (t)| dt ≤ 4K (K + 1) . (3.4)

lemma 3.5 If (1.2), (1.6) hold and ω (f ; t) satisfies (1.9) then
n∑

k=0

ankω

(
f ;

π

k + 1

)
= O

(
an0H

(π

n

))
. (3.5)

If, in addition, ω (f ; t) satisfies (1.10) then
n∑

k=0

ankω

(
f ;

π

k + 1

)
= O (an0H (an0)) . (3.6)

Proof. First we prove (3.5). If (1.6) holds, then

ann − anm ≤ |anm − ann| ≤
n−1∑
k=m

|ank − ank+1|

≤
∞∑

k=m

|ank − ank+1| ≤ Kanm

for any n ≥ m ≥ 0, whence
ann ≤ (K + 1) anm. (3.7)
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From this, using (1.9), we get
n∑

k=0

ankω

(
f ;

π

k + 1

)
≤ (K + 1) an0

n∑
k=0

ω

(
f ;

π

k + 1

)

≤ K1an0

n+1∫
1

ω
(
f ;

π

t

)
dt = K1an0

π∫
π

n+1

ω (f ; u)
u2

du = O
(
an0H

(π

n

))
.

Now, we prove (3.6). Since

(K + 1) (n + 1) an0 ≥
n∑

k=0

ank = 1

we can see that

n∑
k=0

ankω

(
f ;

π

k + 1

)
≤

1
(K+1)an0

−1∑
k=0

ankω

(
f ;

π

k + 1

)

+
n∑

k= 1
(K+1)an0

−1

ankω

(
f ;

π

k + 1

)
.

Using again (3.7), (1.2) and the monotonicity of the modulus of continuity, we obtain

n∑
k=0

ankω

(
f ;

π

k + 1

)
≤ (K + 1) an0

1
(K+1)an0

−1∑
k=0

ω

(
f ;

π

k + 1

)

+ω (f ; π (K + 1) ano)
n∑

k= 1
(K+1)an0

−1

ank

≤ K1an0

1
(K+1)an0∫

1

ω
(
f ;

π

t

)
dt + ω (f ; π (K + 1) ano)

≤ K1an0

π∫
an0

ω (f ; u)
u2

du + 2π (K + 1) ω (f ; an0) . (3.8)

According to

ω (f ; an0) ≤ 4ω
(
f ;

an0

2

)
≤ 8

an0∫
an0
2

ω (f ; t)
t

dt ≤ 8

an0∫
0

ω (f ; t)
t

dt,

in view of (3.8), (1.9) and (1.10), the relation (3.6) holds.

4. Proofs of the Theorems. In this section we shall prove the Theorems 2.1 and 2.2.
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4.1. Proof of Theorem 2.1. First we prove (2.1). Setting

Rn (x) = Tn (f ; x)− f (x) =
1

2π

π∫
0

φx (t) An (t) dt

and

Rn (x, y) = Rn (x)−Rn (y) =
1

2π

π∫
0

(φx (t)− φy (t)) An (t) dt

we get

|Rn (x, y)| ≤ 1
2π

π∫
0

|φx (t)− φy (t)| |An (t)| dt.

It is clear that
|φx (t)− φy (t)| ≤ 4Cω (|x− y|) (4.1)

and
|φx (t)− φy (t)| ≤ 4ω (f ; |t|) . (4.2)

Then, using (4.1), we have

|Rn (x, y)| ≤ 2C

π
ω (|x− y|)


π
n∫

0

+

π∫
π
n

 |An (t)| dt =
2C

π
ω (|x− y|) (I1 + I2) . (4.3)

It is obvious that

I1 ≤

π
n∫

0

1
sin 1

2 t

n∑
k=0

ank

∣∣∣∣sin (
k +

1
2

)
t

∣∣∣∣ dt

≤ π

π
n∫

0

n∑
k=0

ank

(
k +

1
2

)
dt ≤ 3

2
π2. (4.4)

Using (3.2), we obtain

I2 ≤ K1

π∫
π
n

An,t−1

t
dt = K1

n
π∫

1
π

An,t

t
dt

= K1

n−1∑
k=1

k+1
π∫

k
π

An,t

t
dt ≤ K1

n−1∑
k=1

An,k+1

k

≤ 2K1

n∑
k=2

An,k

k
≤ 2K1

n+1∑
k=1

An,k

k
. (4.5)

If (1.7), holds then

anµ − anm ≤ |anµ − anm| ≤
m−1∑
k=µ

|ank − ank+1| ≤ Ka
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for any m ≥ µ ≥ 0, whence
anµ ≤ (K + 1) anm. (4.6)

From this and (1.2) we can observe that
n+1∑
k=1

An,k

k
=

n+1∑
k=1

1
k

n∑
r=n−k+1

anr

≥ 1
K + 1

n+1∑
k=1

an,n−k+1 =
1

K + 1

n∑
k=0

ank =
1

K + 1

and by (4.3)-(4.5), we obtain

|Rn (x, y)| ≤ K2ω (|x− y|)
n+1∑
k=1

An,k

k
. (4.7)

On the other hand, by (4.2), we have

|Rn (x, y)| ≤ 2
π

π∫
0

ω (f ; t) |An (t)| dt

=
2
π


π
n∫

0

+

π∫
π
n

 ω (f ; t) |An (t)| dt =
2
π

(I ′1 + I ′2) . (4.8)

Using (4.6) and (1.9), we can estimate the quantities I ′1 and I ′2 as follow:

I ′1 ≤ ω
(
f ;

π

n

) π
n∫

0

1
sin 1

2 t

n∑
k=0

ank

∣∣∣∣sin (
k +

1
2

)
t

∣∣∣∣ dt

≤ 3
2
π2ω

(
f ;

π

n

) n∑
k=0

ank ≤ 3π2(K + 1)ann

n∑
k=1

ω
(
f ;

π

k

)

≤ K3ann

n∫
1

ω
(
f ;

π

t

)
dt = K3ann

π∫
π
n

ω (f ; u)
u2

du = O
(
annH

(π

n

))
(4.9)

and, by (3.2),

I ′2 ≤ K4

π∫
π
n

ω (f ; t)
An,t−1

t
dt ≤ K5ann

π∫
π
n

ω (f ; t)
t2

dt = O
(
annH

(π

n

))
. (4.10)

Combining (4.8)-(4.10) we obtain

|Rn (x, y)| = O
(
annH

(π

n

))
. (4.11)

Therefore, using (4.7) and (4.11),

sup
x, y

{
∆ω∗Rn (x, y)

}
= sup

x, y

{
|Rn (x, y)|

p
q

ω∗ (|x− y|)
|Rn (x, y)|1−

p
q

}
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≤ K4

{
n+1∑
k=1

Ank

k

} p
q {

annH
(π

n

)}1− p
q

. (4.12)

Since

|Rn (x)| ≤ 1
2π

π∫
0

|φx (t)| |An (t)| dt ≤ 1
π

π∫
0

ω (f ; t) |An (t)| dt,

the inequalities (4.4), (4.5), (4.8) and (4.9) lead us to

‖Tn (f)− f‖C ≤ 1
π


π∫

0

ω (f ; t) |An (t)| dt


p
q


π∫

0

ω (f ; t) |An (t)| dt


1− p

q

≤ 1
π

(ω (f ; π))
p
q


π∫

0

|An (t)| dt


p
q


π∫

0

ω (f ; t) |An (t)| dt


1− p

q

=
1
π

(ω (f ; π))
p
q




π
n∫

0

+

π∫
π
n

 |An (t)| dt


p
q




π
n∫

0

+

π∫
π
n

 ω (f ; t) |An (t)| dt


1− p

q

≤ K5

{
n+1∑
k=1

Ank

k

} p
q {

annH
(π

n

)}1− p
q

. (4.13)

Collecting our partial results (4.12) and (4.13), we obtain that (2.1) holds.
Now, we prove (2.2). By (4.2) we have

|Rn (x, y)| ≤ 2
π

π∫
0

ω (f ; t) |An (t)| dt

=
2
π

 ann∫
0

+

π∫
ann

 ω (f ; t) |An (t)| dt =
2
π

(J1 + J2) . (4.14)

Using (1.9) and (1.10), we shall estimate the quantities J1 and J2 similarly like the
quantities I ′1 and I ′2, respectively. Namely, by Lemma 3.1,

J1 ≤ π

ann∫
0

ω (f ; t)
t

dt = O (annH (ann))

and, by (3.2),

J2 ≤ K6

π∫
ann

ω (f ; t)
An,t−1

t
dt ≤ K7ann

π∫
ann

ω (f ; t)
t2

dt = O (annH (ann)) .

From this and (4.12) we get

sup
x, y

{
∆ω∗Rn (x, y)

}
= O

{
n+1∑
k=1

Ank

k

} p
q

{annH (ann)}1− p
q

 . (4.15)
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In the same manner as in (4.13) we can show that

‖Tn (f)− f‖C ≤ K5

{
n+1∑
k=1

Ank

k

} p
q

{annH (ann)}1− p
q . (4.16)

Combining (4.15) and (4.16) we conclude that (2.2) holds. This completes the proof.

4.2. Proof of Theorem 2.2. Using the same notations as in the proof of Theorem 2.1,
from (4.1) and (3.4), we get

|Rn (x, y)| ≤ 2C

π
ω (|x− y|)

π∫
0

|An (t)| dt

≤ 8CK (K + 1)
π

ω (|x− y|) . (4.17)

On the other hand

|Rn (x, y)| ≤ |Tn (f ; x)− f (x)|+ |Tn (f ; y)− f (y)| .

The estimate (3.3) and the inequality

En (f) ≤ K1ω

(
f ;

π

n + 1

)
,

give

|Rn (x, y)| ≤ 16 (K + 1) (2K + 1)
n∑

k=0

ankEk (f)

≤ K2

n∑
k=0

ankω

(
f,

π

k + 1

)
. (4.18)

Therefore, by (4.17),

sup
x, y

{
∆ω∗Rn (x, y)

}
= sup

x, y

{
|Rn (x, y)|

p
q

ω∗ (|x− y|)
|Rn (x, y)|1−

p
q

}

≤ K3

{
n∑

k=0

ankω

(
f,

π

k + 1

)}1− p
q

. (4.19)

The same estimate can be shown for the deviation Tn (f ; x)−f (x). Namely, by (3.3) and
(1.2), we get

‖Tn (f)− f‖C ≤ 8 (K + 1) (2K + 1)
n∑

k=0

ankEk (f) ≤ K4

n∑
k=0

ankω

(
f,

π

k + 1

)

≤ K5

{
n∑

k=0

ankω

(
f,

π

k + 1

)} p
q

{
n∑

k=0

ankω

(
f,

π

k + 1

)}1− p
q

≤ K6

{
n∑

k=0

ankω

(
f,

π

k + 1

)}1− p
q

. (4.20)
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Finally, collecting our partial results (4.19) and (4.20) and using Lemma 3.5 we obtain
that (2.3) and (2.4) hold.

References

[1] P. Chandra, On the degree of approximation of a class of functions by means of Fourier
series, Acta Math. Hungar., 52 (1988), 199-205.

[2] P. Chandra, A note on the degree of approximation of continuous function, Acta
Math. Hungar., 62 (1993), 21-23.

[3] L. Leindler, On the degree of approximation of continuous functions, Acta Math.
Hungar., 104 (1-2), (2004), 105-113.

[4] R. N. Mohapatra and P. Chandra, Degree of approximation of functions in the Hölder
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