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Abstract. The main aim of this paper is to prove that there exist a martingale f ∈ H1/2

such that the Fejér means of the two-dimensional Walsh-Fourier series of the martingale f is not

uniformly bounded in the space weak-L1/2.

1. Introduction. The first result with respect to the a.e. convergence of the Walsh-

Fejér means σnf is due to Fine [1]. Later, Schipp [5] showed that the maximal operator

σ∗f := sup
n
|σnf | is of weak type (1,1), from which the a. e. convergence follows by

standard argument. Schipp’s result implies by interpolation also the boundedness of σ∗ :

Lp → Lp (1 < p ≤ ∞). This fails to hold for p = 1 but Fujii [2] proved that σ∗ is

bounded from the dyadic Hardy space H1 to the space L1. Fujii’s theorem was extended

by Weisz [8]. Namely, he proved that the maximal operator of the Fejér means of the

one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space Hp (G)

to the space Lp (G) for p > 1/2. Simon [6] gave a counterexample, which shows that this

boundedness does not hold for 0 < p < 1/2. In the endpoint case p = 1/2 Weisz [11]

proved that σ∗ is bounded from the Hardy space H1/2 (G) to the space weak-L1/2 (G) .

In [3] the author proved that the maximal operator σ∗ is not bounded from the Hardy

space H1/2 (G) to the space L1/2 (G) . By interpolation it follows that σ∗ is not bounded

from the Hardy space Hp to the space weak-Lp for any 0 < p < 1/2.

For the two-dimensional Walsh-Fourier series Weisz [9, 10] proved that the following

is true

Theorem W1. Let p > 1/2 . Then the maximal operator σ∗ is bounded from the Hardy

space Hp to the space Lp.
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The author [4] proved that in Theorem W1, for the maximal operator σ∗, the assump-

tion p > 1/2 is essential. Moreover, we prove, that the following is true.

Theorem G. The maximal operator σ∗ is not bounded from the Hardy space H1/2 to

the space weak-L1/2.

Weisz [9, 10] considered the norm convergence of Fejér means of the two-dimensional

Walsh-Fourier series. In particular, the following is true

Theorem W2. Let p > 1/2. Then

‖σn,mf‖Hp
≤ cp ‖f‖Hp

(f ∈ Hp) .

In [9] Weisz conjectured that for the uniformly boundedness of the operator σn,m
from the Hardy space Hp (G×G) to the space Hp (G×G) the assumption p > 1/2 is

essential. We give answer to the question, moreover, we prove that the operator σn,n is not

uniformly bounded from the Hardy space H1/2 (G×G) to the space weak−L1/2 (G×G).

In particular, the following is true.

Theorem 1.1. There exist a martingale f ∈ H1/2 (G×G) such that

sup
n
‖σn,nf‖weak−L1/2

= +∞.

2. Dyadic Hardy spaces. Let P denote the set of positive integers, N := P ∪ {0}.
Denote Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group

operation is the modulo 2 addition and every subset is open. The Haar measure on Z2 is

given such that the measure of a singleton is 1/2. Let G be the complete direct product

of the countable infinite copies of the compact groups Z2. The elements of G are of the

form x = (x0, x1, ..., xk, ...) with xk ∈ {0, 1} (k ∈ N) . The group operation on G is the

coordinate-wise addition, the measure (denote by µ) and the topology are the product

measure and topology. The compact Abelian group G is called the Walsh group. A base

for the neighborhoods of G can be given in the following way:

I0 (x) := G, In (x) := In (x0, ..., xn−1) := {y ∈ G : y = (x0, ..., xn−1, yn, yn+1, ...)} ,

(x ∈ G,n ∈ N) .

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the null element

of G, In := In (0) (n ∈ N) . Set en := (0, ..., 0, 1, 0, ...) ∈ G the n th coordinate of which

is 1 and the rest are zeros (n ∈ N) .

For k ∈ N and x ∈ G denote

rk (x) := (−1)
xk

the k-th Rademacher function.

The dyadic rectangles are of the form

In,m (x, y) := In (x)× Im (y) .

The σ-algebra generated by the dyadic rectangles {In,m (x, y) : (x, y) ∈ G×G}is de-

noted by Fn,m.
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The norm (or quasinorm) of the space Lp (G×G) is defined by

‖f‖p :=

 ∫
G×G

|f (x, y)|p dµ (x, y)

1/p

(0 < p < +∞) .

The space weak-Lp (G×G) consists of all measurable functions f for which

‖f‖weak−Lp(G×G) := sup
λ>0

λµ (|f | > λ)
1/p

< +∞.

Denote by f =
(
f (n,m), n,m ∈ N

)
two parameter martingale with respect to (Fn,m, n,m ∈ N)

(for details see, e. g. [7, 10]). The maximal function of a martingale f is defined by

f∗ = sup
n,m∈N

∣∣∣f (n,m)
∣∣∣ .

In case f ∈ L1 (G×G), the maximal function can also be given by

f∗ (x, y) = sup
n,m∈N

1

µ (In,m(x, y))

∣∣∣∣∣∣∣
∫

In,m(x,y)

f (u, v) dµ (u, v)

∣∣∣∣∣∣∣ ,
(x, y) ∈ G×G,

For 0 < p <∞ the Hardy martingale space Hp(G×G) consists of all martingales for

which

‖f‖Hp
:= ‖f∗‖p <∞.

3. Walsh system and Fejér means. Let n ∈ N, then n =
∞∑
i=0

ni2
i, where ni ∈

{0, 1} (i ∈ N), i. e. n is expressed in the number system of base 2. Denote |n| := max{j ∈
N :nj 6= 0}, that is, 2|n| ≤ n < 2|n|+1.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

wn (x) :=

∞∏
k=0

(rk (x))
nk = r|n| (x) (−1)

|n|−1∑
k=0

nkxk

(x ∈ G,n ∈ P) .

The Walsh-Dirichlet kernel is defined by

Dn (x) =

n−1∑
k=0

wk (x) .

Recall that

D2n (x) =

{
2n, if x ∈ In,
0, if x ∈ G\In.

(1)

The Fejér kernel of order n of the Walsh-Fourier series is defined by

Kn (x) :=
1

n

n−1∑
k=0

Dk (x) .

The rectangular partial sums of the double Walsh-Fourier series are defined as follows:
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SM,Nf (x, y) :=

M−1∑
i=0

N−1∑
j=0

f̂ (i, j)wi (x)wj (y) ,

where the number

f̂ (i, j) =

∫
G×G

f (x, y)wi (x)wj (y) dµ (x, y)

is said to be the (i, j)th Walsh-Fourier coefficient of the function f.

If f ∈ L1 (G×G) then it is easy to show that the sequence (S2n,2m (f) : n,m ∈ N) is

a martingale. If f is a martingale, that is f = (f (n,m) : n,m ∈ N) then the Walsh-Fourier

coefficients must be defined in a little bit different way:

f̂ (i, j) = lim
min(k,l)→∞

∫
G×G

f (k,l) (x, y)wi (x)wj (y) dµ (x, y) . (2)

The Walsh-Fourier coefficients of f ∈ L1 (G×G) are the same as the ones of the

martingale (S2n,2m (f) : n,m ∈ N) obtained from f .

For n,m ∈ P and a martingale f the Fejér mean of order (n,m) of the double

Walsh-Fourier series of the martingale f is given by

σn,mf (x, y) =
1

nm

n−1∑
i=0

m−1∑
j=0

Si,jf (x, y) .

For the martingale f the maximal operator is defined by

σ∗f (x, y) = sup
n,m
|σn,mf (x, y) | .

A function a ∈ L2 is called a rectangle p-atom if there exists a dyadic rectangle R

such that
supp(a) ⊂ R,
‖a‖2 ≤ |R|1/2−1/p∫
G

a (x, y) dµ (x) =
∫
G

a (x, y) dµ (y) = 0 for all x, y ∈ G.

The basic result of atomic decomposition is the following one.

Theorem W3. A martingale f =
(
f (n,m) : n,m ∈ N

)
is in Hp (0 < p ≤ 1) if there exists

a sequence (ak, k ∈ N) of rectangle p-atoms and a sequence (µk, k ∈ N) of real numbers

such that for every n,m ∈ N ,
∞∑
k=0

µkS2n,2mak = f (n,m),

∞∑
k=0

|µk|p <∞.

Moreover,

‖f‖Hp
≤ inf

( ∞∑
k=0

|µk|p
)1/p

.
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4. Auxiliary Result. In order to prove theorem we need the following lemma .

Lemma 4.1. [4]Let 2 < A ∈ P and qA := 22A + 22A−2 + · · ·+ 22 + 20.Then

qA−1

∣∣KqA−1
(x)
∣∣ ≥ 22m+2s−3

for x ∈ Im,s2A := I2A (0, ..., 0, x2m = 1, 0, ..., 0, x2s = 1, x2s+1, ..., x2A−1) , m = 0, 1, ..., A−
3, s = m+ 2,m+ 3, ..., A− 1.

5. Proof of main result. Proof of Theorem 1.1. Since 2m/m ↑ ∞ it is easy to show

that there exists an increasing sequence of positive integers {mk : k ∈ P} such that

∞∑
k=1

1

m
1/2
k

<∞, (3)

k−1∑
l=0

28ml

ml
<

28mk

mk
, (4)

28mk−1

mk−1
<

2mk

kmk
. (5)

Let

f (A,B) (x, y) :=
∑

{l:2ml<min(A,B)}

λlal (x, y) .

where

λl :=
1

ml

and

al (x, y) := 24ml (D22ml+1 (x)−D22ml (x)) (D22ml+1 (y)−D22ml (y)) .

First, we prove that the martingale f :=
(
f (A,B) : A,B ∈ N

)
belongs to the Hardy

space H1/2 (G×G) . Indeed, since

‖al‖2 ≤ c2
6ml ,

S2A,2Bak (x, y) =

{
0, if min (A,B) ≤ 2mk,

ak (x, y) , ifmin (A,B) > 2mk,

we can write

f (A,B) (x, y) :=
∑

{l:2ml<min(A,B)}

λlal (x, y) =

∞∑
k=0

λkS2A,2Bak (x, y)

from (3) and Theorem W3 we conclude that f ∈ H1/2 (G×G) .

Now, we investigate the Fourier coefficients. Since∫
G×G

f (A,B) (x, y)wi (x)wj (y) dµ (x, y)
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=



0,
(i, j) /∈

∞⋃
k=0

{22mk , ..., 22mk+1 − 1}

×{22mk , ..., 22mk+1 − 1},

0,
(i, j) ∈ {22mk , ..., 22mk+1 − 1}
×{22mk , ..., 22mk+1 − 1},min(A,B) ≤ 2mk,

24mk

mk
,

(i, j) ∈ {22mk , ..., 22mk+1 − 1}
×{22mk , ..., 22mk+1 − 1},min(A,B) > 2mk,

we can write (see (2))

f̂ (i, j) =


24mk

mk
,

(i, j) ∈ {22mk , ..., 22mk+1 − 1}
×{22mk , ..., 22mk+1 − 1}, k = 1, 2, ...,

0,
(i, j) /∈

∞⋃
k=1

{22mk , ..., 22mk+1 − 1}

×{22mk , ..., 22mk+1 − 1}.

(6)

Let qmk
:= 22mk + 22mk−2 + · · ·+ 22 + 20. Then we can write

σqmk
,qmk

f (x, y) =
1

q2
mk

qmk
−1∑

i=0

qmk
−1∑

j=0

Si,jf (x, y) (7)

=
1

q2
mk

22mk−1∑
i=0

22mk−1∑
j=0

Si,jf (x, y)

+
1

q2
mk

qmk
−1∑

i=22mk

22mk−1∑
j=0

Si,jf (x, y)

+
1

q2
mk

22mk−1∑
i=0

qmk
−1∑

j=22mk

Si,jf (x, y)

+
1

q2
mk

qmk
−1∑

i=22mk

qmk
−1∑

j=22mk

Si,jf (x, y)

= I + II + III + IV.

Let (i, j) ∈
{

22mk , ..., qmk
− 1
}
×
{

22mk , ..., qmk
− 1
}

. Then from (6) we have

Si,jf (x, y) =

i−1∑
v=0

j−1∑
µ=0

f̂ (ν, µ)wν(x)wµ(y)

=

k−1∑
l=1

2ml+1−1∑
ν=2ml

2ml+1−1∑
µ=2ml

f̂ (ν, µ)wν(x)wµ(y)

+

i−1∑
ν=22mk

j−1∑
µ=22mk

f̂ (ν, µ)wν(x)wµ(y)

=

k−1∑
l=1

24ml

ml
(D22ml+1(x)−D22ml (x))×

(
D2

2ml
+1(y)−D2

2ml
(y)
)
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+
24mk

mk

(
Di(x)−D2

2mk
(x)
) (
Dj(y)−D2

2mk
(y)
)
. (8)

substitute (8) in IV, we have

IV (9)

=
1

q2
mk

(
qmk
− 22mk

)2 k−1∑
l=1

24ml

ml
(D22ml+1(x)−D22ml (x))

× (D22ml+1(y)−D22ml (y))

+
1

q2
mk

24mk

mk

qmk
−1∑

i=2
2mk

qmk
−1∑

j=2
2mk

(Di(x)−D22mk (x))

× (Dj(y)−D22mk (y))

= IV1 + IV2.

Since

Dj+22mk (x) = D22mk (x) + w22mk (x)Dj(x), j = 0, 1, ..., 22mk − 1.

for IV2 we can write

IV2 =
1

q2
mk

24mk

mk
w22mk (x)w22mk (y)

qmk−1−1∑
i=0

Di(x)

qmk−1−1∑
j=0

Dj(y)

=
1

q2
mk

24mk

mk
w22mk (x)w22mk (y)q2

mk−1Kqmk−1(x)Kqmk−1(y). (10)

Since

|D2n(x)| ≤ 2n, n ∈ N, x ∈ G
by (4) and (5) we obtain

|IV1| ≤ C
k−1∑
l=1

28ml

ml
≤ C 2mk

kmk
. (11)

Combining (9)-(11) we have

IV ≥
Cq2

mk−1

mk

∣∣∣Kqmk−1
(x)
∣∣∣ ∣∣∣Kqmk−1

(y)
∣∣∣− C2mk

kmk
. (12)

Let

(i, j) ∈
({

22mk , ..., qmk
− 1
}
×
{

0, 1, ..., 22mk − 1
})

∪
({

0, 1, ..., 22mk − 1
}
×
{

22mk , ..., qmk
− 1
})

∪
({

0, 1, ..., 22mk − 1
}
×
{

0, 1, ..., 22mk − 1
})
.

Then from (6), (4) and (5) it is easy to show that

|Si,jf(x, y)| ≤
k−1∑
l=0

22ml+1−1∑
ν=22ml

22ml+1−1∑
µ=22ml

∣∣∣f̂(ν, µ)
∣∣∣

≤
k−1∑
l=0

28ml

ml
≤ C2mk

kmk
.
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Consequently

|I| ≤ 1

q2
mk

22mk−1∑
i=0

22mk−1∑
j=0

|Si,jf(x, y)|

≤ C 24mk

q2
mk

2mk

kmk
≤ C2mk

kmk
(13)

|II| ≤ 22mk(qmk
− 22mk)

q2
mk

2mk

kmk
≤ C 2mk

kmk
, (14)

|III| ≤ C2mk

kmk
. (15)

Combining (7), (9)-(15) we obtain that∣∣∣σqmk
,qmk

f(x, y)
∣∣∣ ≥ Cq2

mk−1

mk
|Kqmk−1

(x)||Kqmk−1
(y)| − C2mk

kmk
. (16)

Let (x, y) ∈ I l1,l1+2
2mk

× I l2,l2+2
2mk

, (l1, l2) ∈ {0, 1, ...,mk − 3} × {0, 1, ...,mk − 3}.
Then from Lemma 4.1 we can write

qmk−1

∣∣∣Kqmk−1
(x)
∣∣∣ ≥ C24l1

and

qmk−1

∣∣∣Kqmk−1(y)
∣∣∣ ≥ C24l2 ,

consequently,

q2
mk−1

∣∣∣Kqmk−1(x)
∣∣∣ ∣∣∣Kqmk−1(y)

∣∣∣ ≥ C24l1+4l2 ,∣∣∣σqmk
,qmk

f(x, y)
∣∣∣ ≥ C

mk
24l1+4l2 − C2mk

kmk
. (17)

Denote

A(mk) :=
{

(l1, l2) : 0 ≤ l2 ≤ mk − 3, 0 ≤ l1 ≤
mk

4
, l1 + l2 ≥

mk

4

}
and

αk :=
C2mk

mk
.

Since (see (17) and (l1, l2) ∈ A (mk))∣∣∣σqmk
,qmk

f (x, y)
∣∣∣ ≥ C

mk
2mk − C2mk

kmk

≥ C2mk

mk
= αk

we have

µ
{

(x, y) ∈ G×G :
∣∣∣σqmk

,qmk
f(x, y)

∣∣∣ ≥ Cαk}
≥

∑
(l1,l2)∈A(mk)

µ
{

(x, y) ∈ I l1,l1+2
2mk

× I l2,l2+2
2mk

:
∣∣∣σqmk

,qmk
f(x, y)

∣∣∣ ≥ αk}
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≥ C
[mk/4]∑
l1=0

mk−3∑
l2=[mk/4]−l1

1∑
x2l1+5=0

· · ·
1∑

x2mk−1=0

1∑
x2l2+5=0

· · ·
1∑

x2mk−1=0

µ
(
I l1,l1+2
2mk

× I l2,l2+2
2mk

)
≥ C

[mk/4]∑
l1=0

mk−3∑
l2=[mk/4]−l1

1

22l1+2l2
≥ Cmk

2mk/2
.

Consequently

αk

(
µ
{

(x, y) :
∣∣∣σqmk

,qmk
f(x, y)

∣∣∣ ≥ Cαk})2

≥ C 2mk

mk

m2
k

2mk
= Cmk →∞ as k →∞,

sup
k

∥∥∥σqmk
,qmk

f
∥∥∥
weak−L1/2

:=

= sup
k

sup
λ>0

λ
(
µ
{

(x, y) ∈ G×G : σqmk
,qmk

f(x, y) > λ
})2

= +∞.

Theorem 1.1 is proved.
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