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Abstract. We show the general and precise conditions on the functions and modulus of conti-
nuity as well as on the entries of matrices generated the summability means and give the rates
of approximation of functions from the generalized integral Lipschitz classes by double matrix
means of their Fourier series. Consequently, we give some results on norm approximation. Thus
we essentially extend and improve our earlier results [Acta et Commentationes Universitatis
Tartuensis de Mathematica, Vol. 13 (2009), 11-24] and the result of S. Lal [Applied Mathemat-
ics and Computation 209 (2009) 346-350].

1. Introduction. Let L (1 < p < 00) [p = o] be the class of all 2r—periodic real-valued
functions (integrable in the Lebesgue sense with p—th power)[essentially bounded] over
Q = [—m, 7] with the norm

1
(f 11@ P de) ™" when 1<p< oo,
Q

esssup | f(t)| when p= o0
teQ

and consider the trigonometric Fourier series

=15 Ol = (1.1)

Qo

Sf(x):= (/) + Z(al,(f) cosvz + by, (f)sinve) (1.2)
v=1

2

with the partial sums Sy f.

2000 Mathematics Subject Classification: 42A24.

Key words and phrases: Rate of approximation, summability of Fourier series, Lipschitz
classes..

The paper is in final form and no version of it will be published elsewhere.

(1]
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Let A := (anx) and B := (b, k) be infinite lower triangular matrices of real numbers
such that

any > 0andb,; >0 when £=0,1,2,..n, (1.3)
anyr = O0andb,; =0 whenk>n,
Zan,k =1 and mek =1, wheren=0,1,2, ..., (1.4)
k=0 k=0

and let, for m =0,1,2,..,n

An,m = Z Qn k and n,m — Z Qn, K (15)

k=m
n

Bpm = mek and Bnm = Y buk-
k=0 k=m

Let the AB—transformation of (S f) be given by

nABf ZZ nrarkskf ) ( TLZO,]_,Q,...). (16)

r=0 k=0
As a measure of approximation by the above quantity we use the generalized modulus
of continuity of f in the space LP defined for § > 0 by the formula

0<[t|<é

B
wpf(0)pp = sup {Sln’ lle- ( )ILp}a (1.7)

where
e (t)=flx4+t)+ fx—t)—2f(x).
It is clear that for 8 > a >0
w,@f (6)Lp < Waf (5)Lpa

and it is easily seen that wof (-);, = wf (-);, is the classical modulus of continuity.
The deviation T,, 4 pf — f with the lower triangular infinite matrix B, defined by
bp,r = %—l—l when r=0,1,2,..n and b, , =0 when r > n, and with the lower triangular

infinite matrix A, defined by a, x = pr—i/ Z p, when k=0,1,2,..r and a, = 0 when
k > r, was estimated by S. Lal [1, Theorem 2] as follows:
THEOREM A. If

fe Ljw)

Bp
sing‘ de p <w(9) p,

0<[t|<é

ferrs wf @)y = sw < [le@F
0

where w is such that
w(t) . . )
——= 1is a decreasing function of t,
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- » 1/p
e e I B

and
1/p
" 7 e ()] psinﬁp —O(n+1) 1
{/ﬂ/(nﬂ) ( w(t) ) tdt} O(ln+1)7) (0<y< p), (1.9)
then

> S S kS
=0 " Y k=0

11/

where P, = > p, with nonnegative and nonincreasing sequence (p, ).
v=0

i

Since the condition (1.8) used in the estimate of the integral [;*** (from the proof of

m_ (148
Theorem 2 [1] of S. Lal) leads us to the divergent integral of the form [,"*' ¢ T=17# dt under
the assumption 8 > 0, therefore, instead of this condition, we shall take the following
one:

1/p

{/OW/WFD (lff(%)l)psinﬁp tdt} =0, ((n+ 1)71/17) : (L.11)

t
2
In our theorems we will consider the pointwise deviation

Toa,f (x) = f(2)

with the mean T}, 4 pf introduced at the beginning. We will formulate general and precise

In the paper [1, (Proof of Theorem 2)] sin £ should be used instead of sint.

conditions on the functions and the modulus of continuity as well as on the entries of the
matrices A and B and give the rates of approximation of functions from the generalized
integral Lipschitz classes by our double matrix means of their Fourier series. Consequently,
we give some results on norm approximation. Thus we essentially extend and improve
our earlier results (see [2]) and the result of S. Lal [1].

We shall write I; < I if there exists a positive constant K, sometimes depending on
some parameters, such that Iy < K.

2. Statement of the results. Let us consider a function w of modulus of continuity
type on the interval [0, 27], i.e. a nondecreasing continuous function having the following
properties: w (0) = 0, w (d1 + d2) < w (01) + w (d2) for any 0 < §; < Jp < 61 + I < 27,
It is easy to conclude that the function §~'w (§) is a quasi nonincreasing function of 4.
Let, for such w,

LP(w)g ={f €Ll :waf(0), <w(0)}.
It is clear that, for 8 > a > 0,
L? (w), C L? (w)ﬁ .

Now, we can formulate our main results on the degrees of pointwise summability.



WIODZIMIERZ LENSKI AND BOGDAN SZAL

THEOREM 1. Let f € LP (w)ﬁ with0 < < 1— %, and let w satisfy

1
sl p P
{M (wjf(gt)n) sin®? idt}” _
n+1

O, ((n—|— 1)_%) ,when 1 < p < oo,

2.1
ess sup | W*(t))lsmﬁt |= 0O, (1), when p=co 2.1)
telFT %

and

1
{fo”+1 (lim((tt)*)l) sin”P tdt} =0, ((n +1)7* )
ess sup | ‘ff((tt) | sin’a% |= 0, (1), when p=oc. ’
t€[0, 7511

If the entries of our matrices satisfy conditions

1
bn.n S 2.3
"€ (2.3
and
|bn,rar,r—l - bn,r-{—lar-‘rl,r—i-l—l‘ < o 2 fO?” 0 S l S r S n— 1, (24)
(r+1)
then
Tyant @) -] = O, ibm# e (T
T — e+ 1 = s+1
s= 0 ( +1>>
and, in the caseO<ﬁ<1—l
T, a5 (x) = f ()]
== Om ]. A T ]- 1-# bns 1 -t 9
<<n+ P ) [ 0 b o+
for considered x.
THEOREM 2. Let f € LP(w); with0 < <1— %, and let w satisfy (2.2) and
1
™ (e Bp t }5
{f% (tm(t)) sin”P Sdt O, ((n+1)"), when 1<p< oo, 25)
ess sup | ‘tf;(t)l in’ L |= 0, ((n+1)7), when p= o0,
te[ 5.7

with a nonnegative v such that f —~v <1 — %. If the entries of our matrices satisfy the
conditions (2.3) and (2. 4), then

TS (@) = f(2)]

n 1 r . 1 q) ¢
- 0, (n+1)7‘12bn,TZ(w( )(s+1)3 T+ P) }
{ = r—i—lszo s+1

1

+{n+1”" 12n:< ( ) s+1)5‘”+1/p)q}q
s=0
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and, in the case 0 < f—y <1 —1

p7
’Tn,A,Bf(x) - f(l')’
= O, (n 4 1),3+1/pw ( 7T ) {(TL + 1)17(577)q zn:bn,r (’l" + 1)(Bw)q1} 7

n+1

for considered x, where g = ﬁ.

If the entries of the matrix B are as in Theorem A then we can formulate the above
theorem in the following simpler form.

THEOREM 3. Let f € LP (w)g with0 < <1— %, and let w satisfy (2.1) and (2.2). If
the entries of the matrix A satisfy the condition

1

larr—1 — @ri1 11| K ——— for 0 <1<, (2.6)

(r+1)
then
T, s (yf @) =1 @)
1 &« 1 ¢ 3 s
= 0, 1
<n+1;)7°+13_0(5+ ) w( +1>>

and,for0<ﬁ<1—%,

T, s (o f @ = F@)] =0 (<n 1) (ni 1)> ’

for considered x.

THEOREM 4. Let f € LP(w); with0 < <1-— 1%, and let w satisfy (2.2) and (2.5) with

a nonnegative v such that g —~v <1 — %. If the entries of the matriz A satisfy condition
(2.6), then

T, p (o @)= £ (@)

n+1
= O (TL + 1)7‘]*1 z’n: 1 zr: w L (S + 1)6*'Y+1/p 0"
* —r+l = 541 ’
wherequ’%l and, in the caseO<,@—’y<1—%,
_ — B+1/p m
n oy @ = T @] =0, (00770 (21,

for considered x.

COROLLARY 1. Under the assumptions of Theorem 4 on a function f, if (p,) is a nonin-
creasing sequence such that

P, Z P;'=0(r) forany T >0, (2.7)

then from Theorem 4 we obtain the corrected form of the result of S. Lal.



6 WIODZIMIERZ LENSKI AND BOGDAN SZAL
REMARK 1. We note that, in the proof of the mentioned theorem of S. Lal [1] the condition
n
PTz:PV_1 =0(n+1) forany T >0,

is used, which holds for every nonnegative sequences (py). Instead (2.7) should be used.

Consequently, we reformulate the results on the LP estimate of the norm of the devi-
ation considered above.

THEOREM 5. Let f € LP(w); with0 <3 <1~ %. If the entries of our matrices satisfy
conditions (2.8) and (2.4), then

[T f O =FOll, = (me Z(s+1)%<sil)

s=0

cmd,f01"0<5<1—l7

H nABf ()HLP

= 0, ((n +1)w <nil>

THEOREM 6. Let f € LP(w); with0 < 8 <1— %. If the entries of matriz A satisfy the
condition (2.6), then

(n+1)7 Zn: bp.s (s + 1)f’—1] ) .

s=0

and, in the case 0 < 3 < 17%,

| a=10], =0 (w+vie ().

REMARK 2. In the case if p > 1 (specially if p = 1) we can suppose that the expression

t~Pw (t) is nondecreasing in t instead of the assumption § < 1 — %.

Tn A

(n+1

REMARK 3. Under the additional assumptions § = 0 and w (t) = O (t%) (0 < a < 1), the

degree of approximation in Theorem 3 is O (n~%), but in Theorem 4, is O (n%ﬂ)‘) .

REMARK 4. If we consider the modulus of continuity wf () L then our theorems will

be true under the assumption that f € Lp (w) and with the following norm

(f | () [P ’sm ’det) " when 1 <p < o0,

||f||Lg = ||f()||L§ = eSSSup{| f | |Sln | } When p = o0.
€Q
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3. Proofs of the results. We begin this section by some notations following A. Zyg-
mund [3].
It is clear that

Sef(@)== [ f(z+1t)Dp(t)dt
and
1 T n r
Tn,A,Bf (1’) = — / f (x -+ t) bn,ranka (t) dt’
TJ—m r=0 k=0
where
1 k sinw f i
Dk(t)zf-i-ZCosut: “2smg 0T #2mr, 1=0,1,2,..
2= k+3 otherwise
and
i h <
Dy ()] <{ T when 0 < [t <,
k+1 whent e (—o0,+0).
Hence

Tasd 0= @) == [Te 0 3 burarsDi 6) .

r=0 k=0

We will prove our results for 1 < p < oo only. If p = co we have to use the generalized
Holder inequality instead the classical one.

3.1. Proof of Theorem 1. Let

Toas (2) — f (2) = ( |7+ /) 0 (0SS b vatn Dy (1) di

n+1 r=0 k=0

T ™
-
0 _m

n+1

™
-/n+1
0

By the Holder inequality <% +1= 1) ,and (2.2), for 0 < g <1— %,

and

|Th.a,5f (x)— f(z)] < +

Lt

n+1

q

/O+ < mil)/o"il%(mdt
< e[ g o) {1 5] of
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. 1
1 7r N R
1 1 P — | dt
< (n+1) w(n+1){/o L"] }
38 ™ 1 - 38 ™
1 o —_— 1
< (n+1) w<n+1><<n+1;(s+ ) w<n+1>
= T

IN

and, since sin% > % T ’Sin(Qk +1) %‘ <(2k+1) sin% for t € [0, 7], we have
' L / sm k+ )
/ = Zan Py ————F——| dt
i n+ r=0 k=0 25111
™ T—1 r
< / “Pm | Z k—l— 1 nrank dt
Ea r=0 k=0
™ " t n T— . .
+/7 lea (8)] ZZ n,rCr,r—k S (7'—/‘6+2>t dt
n+1 r=T k=
v . 1
+ o Z Z bn,rar,r—k sin <'r —k + 2) tl dt

=T k=1
=L+ L+,
where 7 = [Z] for t € (0, 7).

Now we shall estimate the integrals of type I. So, using the Holder inequality, by the
assumption (2.1)

T—1

B[ e @Y (Dbt

i
n+1 r=0

:Z/ s (¢ |Z (r+1) bmdt<<22r+1 n/ |0z ()] dt

s=1" s+ s=1r=0
e @] . 5t]" |7
[ o () sin 5 dt

< XY+ )T () e
=0

k-]
——
A el
0
| —— |

w
— E
S\Q —
y
[\)‘F“ S~—
| IS
W
=
——
S

IN
(7=
=3
+
=
S
N

S

€
7 N
»
+1=2
—
S~—
W
+
=
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= Zn: (r+1) by pw <rj:1> (r+ 1Y%

r=0

- ™ Jé]
= bnr +1

n 1 5 -
< ;}b”””wl (s+1) w<s+1)'

s=0

Since (2.3) and (2.4) we have

I,
RGNS a 1
— i f ;} Z (bn,rar,r—k - bn,r+1ar+17r+1—k) ZZSIH l — ,Z{I —+ 5 t
n41 —0 Lr=71 —

dt

— 1
bn,nan,n—k ;Sln (l —k+ 2) t

< /W |90$ Z Z ) by n‘hL,n—k] dt
T

n—1
(T+1)Z(b+ 2+ nnzann k]

IN
\
‘:: 3

©
~ | 8
N~

n—1
b’I'LT’
(T+1)Y . — s + b

< [ e 2 y
b —(r+1)
n—1
A0 b " e ()]
= /" t2 (T+1)Z( th+bn,n . t dt
n+1 r=r1 T
n z n—1
F e (8) » 1 / = (8]
< / (t+1) = dt + dt
s; EI & TZT(TJrl)Q n+l) .
n n b 1 |90I()|
< s+1 d + / P ALt
;<( )TZ;(wrl)? n+1> a2 B
- 5 b 1
< s+1 :
pt <( );(r—l—l)Z n+1>

™
s

(o tersf o) 1 ] )
<3 <(S+1)T§: (rbr’i)z + ni1> (n+1)’%w<g) {/: [tﬂlﬂrdt}q
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< <(s +1)) (Tb:’;)Q + ni 1) (s+1)’w <sil>

n

1) (s+ 1) <S+7T1) +%HZ(5+1)% (311)
1

IN
(]
S
3
N

s=0

< b 1)°
< Yty aeen’s ()
r=0 s=0
J— 3
1 R
rT e ()
n 1 i 8 ™ 1 i 8 T
< bp.r—— 1 —_— 1
< Dby S0 () 2 e ()
and
I3
= / ‘SDT Zanramn ksm(r—k+ )t dt
n+1 T=T k=1

dt

t " 1
)| Z an}rar)r,k sin (r — k4 2) ¢
k=1 r=k

r
. 1

k by aQrr—k — bn,r+1ar+1,r+1fk) lE - s1n <Z —k+ 2> t

r= =

n(l k+ )

" et >\ iS
< / 2 ‘bn rQrr—k — bn,r+1ar+1,r+17k| + bn,nan,nfk dt
r=k

ﬁ
7

=
n+1

dt

+ bn nln n—

\M:

3
3
p
\ |

71— n
S |S0I [ Z |bn rar r—k — n T+1a’r’+17r+1—k‘ + bnvn Z an,n—k] dt
r=T k=T k=7
1
< |§0x [ 1 dt
r=T k=T ’I" + 1 ’fL +

dt.

T n
§/ I%Z(t)l )3 bur 1
n+1 rT=T

Further, the same calculation, as that in the estimate of Iy , gives the inequality

|90r bnr 1
I < Z/ T+1+n+1
s=1" 541
n 1 -
Z Z / | ()‘dt
— 7“—1—1 n+1 = t2

s=1 +1

dt
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n 1 T B T 1 n B T
<L B0 () + e e+ 0o ()
r=0

s=0 s=0

If 6> 0, then
Tn,a,8f (x) — f(2)]

< (”+1)W<nil>i(bn,s+nil>(s+1)ﬁ_1
)

< (n—l—l)w(

S
+
—

(n+1)'77> s (s + 1) +1
s=0

(n+ 1)17ﬁ Z bns (s + 1)’671
s=0

- ()

< (m+1)w (nj—l)

Collecting these estimates we obtain the desired result. B

3.2. Proof of Theorem 2. With the notations of the above proof,

T - T
B
1 -
/0 < r-i—lzi (s+1) “’(s+1>

< {(qu1i(<s+1>ﬁw(sjl)>q}é.

s=1
Furthermore, using the Holder inequality, by the condition (2.5), we obtain the next
estimates

T 7—1

B[l O1Y (o b

P -
n+1 r=0

) {/W [Lfffu((?)' v ;rdt}; {/ﬂ [ts:;)ﬂ(i Tz_% (r+ 1)bn,rrdt}q
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e
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&
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v

+

—
~
N——

n (r+ 1)qbn,ri (w (S I 1)>q (5 4+ 1)F—a-2

1

E—
(TI ) (r + 1)Bv+1/p>q}é

n 1 r B q 1
S (Tl + 1)7 bn,r (w ( T ) (S + 1)5 ’Y+1/P)
= r+1 — s+1

™

n—1
" lee (1) b / on (0
I R N 2 (] 9
2<</7-r t2 TZ(T+1)2 + ’ 71- t2

mH r=T n+1
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e
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n n—1 q s q q
bor tw (t)
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=S s+1
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P

s=1
1
(1) [ [T [rww ]
n+1 Z = | t2sin” L g
s=1" s+1 2

S ) )
e (S et (oo

1
l’Y n o q) a
N n+1) " T (s+1)2+,3 v—2/q
n—+1 = s+1

n 1 T T q q
< v (B=7)+2/p
< (n+1) {;bn,r(r+1)q 2 (w (s+1>(s+1)

+<"+1>”{<n+11>q (w (sil) (Hl)(ﬁ_ww/p)q};

1

R 7r - a1
< (n+1) {an’rT+1 <w <s+1)(8+1)(ﬁ 7)+1/p> }
5=0

13
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Further, similarly as in the estimates of I

" e (O] [x bar 1
I 7 dt.
8< / 2 Zr+1+n+1

P -
n+1 r=r

< o {Sn S () o) |
1) {nili («(:25) (Sﬂ)g_wm)q}q

If 86—~ >0, then

<
+
—

|Thasf(z)—f(2)
- n 1 r 1/q
b (n+1)7+1w<n+1> {Zb’”m A <s+1)<ﬁ‘”q—1}

1/q
+1

n 1/q
< 2+ 1)y (n i 1) (n+1)"TIN L (r+ 1)“’”‘11]

r=0

Collecting these estimates we obtain the desired result. B

3.8. Proof of Theorems 8 and 4. If we put b, , = n%rl in the above proofs, then the

desired estimates immediately hold true. B

3.4. Proof of Corollary 1. We have to show that the condition (2.7) and the monotonicity
of (p,) imply (2.6). Indeed, putting

Pr—k
Ar k. =
and taking 7 =1 in (2.7) we can see that
1> AY g emY g -
v=1 PU a v=1 PT PT

whence, by the monotonicity of (p,) we have

P12 (r+1)pra
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and therefore

la —a | = b b SR
=l T+l PT PT+1 b Pr Pr+1

Pr+1 - Pr _ ﬂ Pr+1
Pr Pr Pr+l
ﬂ Pr+1 _ Di
P.(r+1)py1  (r+1)P.
Do 1
< < .
(r+1) P 7 (r+1)?

Thus the desired implication follows. B

= D

3.5. Proofs of Theorems 5 and 6. The proofs are similar to the above. In the estimates
under LP norms with respect to = there will be the expressions like these on the left hand
side of our conditions (2.1) , (2.2) and (2.5) . Since f € L (w) 4, the such norm quantities
will always have the same orders like these on the right hand side of the mentioned
conditions. Therefore the proofs follow without any additionally assumptions on f and
w. i
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