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Abstract. The main aim of this paper is to prove that there exist a martingale f € Hy/,
such that the Fejér means of the two-dimensional Walsh-Fourier series of the martingale f is not
uniformly bounded in the space weak-L, /5.

1. Introduction. The first result with respect to the a.e. convergence of the Walsh-

Fejér means o, f is due to Fine [1]. Later, Schipp [5] showed that the maximal operator

o*f := suplo,f| is of weak type (1,1), from which the a. e. convergence follows by
n

standard argument. Schipp’s result implies by interpolation also the boundedness of o* :
L, - L, (1 <p<oo). This fails to hold for p = 1 but Fujii [2] proved that ¢* is
bounded from the dyadic Hardy space H; to the space L;. Fujii’s theorem was extended
by Weisz [8]. Namely, he proved that the maximal operator of the Fejér means of the
one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space H, (G)
to the space L, (G) for p > 1/2. Simon [6] gave a counterexample, which shows that this
boundedness does not hold for 0 < p < 1/2. In the endpoint case p = 1/2 Weisz [11]
proved that o* is bounded from the Hardy space Hy /5 (G) to the space weak-Ly /s (G) .
In [3] the author proved that the maximal operator ¢* is not bounded from the Hardy
space Hy /o (G) to the space Ly 5 (G) . By interpolation it follows that o* is not bounded
from the Hardy space H, to the space weak-L,, for any 0 < p < 1/2.

For the two-dimensional Walsh-Fourier series Weisz [9, 10] proved that the following
is true

THEOREM W1. Let p > 1/2 . Then the maximal operator o* is bounded from the Hardy
space H,, to the space L.
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The author [4] proved that in Theorem W1, for the maximal operator ¢*, the assump-
tion p > 1/2 is essential. Moreover, we prove, that the following is true.

THEOREM G. The maximal operator ¢* is not bounded from the Hardy space H; /o to
the space weak-L /5.

Weisz [9, 10] considered the norm convergence of Fejér means of the two-dimensional
Walsh-Fourier series. In particular, the following is true

THEOREM W2. Let p > 1/2. Then

||0'n,mf||Hp <¢p ||f||Hp (f € Hp) .

In [9] Weisz conjectured that for the uniformly boundedness of the operator oy,
from the Hardy space H, (G x G) to the space H, (G x G) the assumption p > 1/2 is
essential. We give answer to the question, moreover, we prove that the operator oy, ,, is not
uniformly bounded from the Hardy space H, /5 (G x G) to the space weak—Ly /5 (G x G).
In particular, the following is true.

THEOREM 1.1. There exist a martingale f € Hy o (G x G) such that

sup ”O'n,nf”weakal/z = +o00.
n

2. Dyadic Hardy spaces. Let P denote the set of positive integers, N := P U {0}.
Denote Z, the discrete cyclic group of order 2, that is Zs = {0,1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar measure on Zs is
given such that the measure of a singleton is 1/2. Let G be the complete direct product
of the countable infinite copies of the compact groups Zs. The elements of G are of the
form x = (zg, 21, ..., Tk, ...) with 2 € {0,1} (k € N). The group operation on G is the
coordinate-wise addition, the measure (denote by p) and the topology are the product
measure and topology. The compact Abelian group G is called the Walsh group. A base
for the neighborhoods of G can be given in the following way:

IO (‘/I") = G7 I’n (:C) = In (LL'(), ~--axn71) = {y €G: Yy = (:EOa w3 Tn—15 Yny Yn+1, )}a
(r € G,neN).

These sets are called the dyadic intervals. Let 0 = (0 : ¢ € N) € G denote the null element
of G, I, :=1I,(0) (n € N). Set e, := (0,...,0,1,0,...) € G the nthcoordinate of which
is 1 and the rest are zeros (n € N).

For k € N and z € G denote

e (z) = (=1)™

the k-th Rademacher function.
The dyadic rectangles are of the form

Inm (w,y) := I (2) X Iy (y) -

The o-algebra generated by the dyadic rectangles {I,, ., (z,y) : (z,y) € G x G}is de-
noted by F, .
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The norm (or quasinorm) of the space L, (G x G) is defined by

1/p

1A, (a/uxywuy) (0<p< +o0).

The space weak-L,, (G x G) consists of all measurable functions f for which
1 hcar -2, = Sup A (1] > NP < oo,

Denote by f = (f(”””), n,m € N) two parameter martingale with respect to (F,, ,,,n, m € N)I
(for details see, e. g. [7, 10]). The maximal function of a martingale f is defined by

Jr=sup |fm).

n,meN

In case f € L1 (G x G), the maximal function can also be given by

. 1
[ (z,y) = SUENW / [ (u,v) dp (u,v)|,
’ n,m(Z,Y)
(z,y) € G x G,

For 0 < p < oo the Hardy martingale space H,(G x G) consists of all martingales for
which

11|z, = (17l < oe.
P

o] .

3. Walsh system and Fejér means. Let n € N, then n = ) n;2", where n; €
i=0

{0,1} (i € N), i. e. n is expressed in the number system of base 2. Denote |n| := max{j €

N :n; # 0}, that is, 2Inl < g < 2lnl+1

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:
In]—1
[es} Z NETrk
wo (@) = [] (e @)™ = o) (@) (=1) &5 (xeGneP).

k=0
The Walsh-Dirichlet kernel is defined by

n—1
z) = w (x)
k=0
Recall that

o itz e I,
Dar () = { 0, if z € G\I,. (1)

The Fejér kernel of order n of the Walsh-Fourier series is defined by

n—1
1
= Di(x)
k=0

The rectangular partial sums of the double Walsh-Fourier series are defined as follows:
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M—1N-1

Sunf(z,y) Z Z w; (x) w; (y)

where the number
Fii= [ 1w @iy
GxG

is said to be the (i, 7)th Walsh-Fourier coefficient of the function f.

If f € L1 (G x Q) then it is easy to show that the sequence (Sgn om (f) : n,m € N) is
a martingale. If f is a martingale, that is f = (f(»™) : n,m € N) then the Walsh-Fourier
coefficients must be defined in a little bit different way:

Fag= dim [ 1% g @) ws ) du ). )
GxG

The Walsh-Fourier coefficients of f € L; (G x G) are the same as the ones of the
martingale (Sgn om (f) : n,m € N) obtained from f.

For n,m € P and a martingale f the Fejér mean of order (n,m) of the double
Walsh-Fourier series of the martingale f is given by

n—1m—1

Jnmfxy 7zzsdfxy

=0 j5=0

For the martingale f the maximal operator is defined by

" f(z,y) =sup|onmf (z,y)].
n,m
A function a € Lo is called a rectangle p-atom if there exists a dyadic rectangle R

such that
supp(a) C R,
lally < |R|*/2-1/P

Ja(z,y)dp(z) = [a(z,y)du(y) =0 for all z,y € G.
€] G
The basic result of atomic decomposition is the following one.

THEOREM W3. A martingale f = (f("vm) tn,m € N) isin H, (0 < p < 1) if there exists
a sequence (ag, k € N) of rectangle p-atoms and a sequence (ug, k € N) of real numbers
such that for every n,m € N |

ZMkSZ",T"ak = f(’ﬂ7m)’

k=0

o0
Dl < 0.
k=0

Moreover,

[e%) 1/17
£, < inf (Z mvn) |

k=0
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4. Auxiliary Result. In order to prove theorem we need the following lemma .

LEMMA 4.1. [{JLet2 < A€ P and qa := 2?4 422472 ... 122 1 20, Then

qA—1 |KqA,1 ($)| Z 22m+2373

fOT‘l‘ S I;nAg = IQA (07 ~-~707$2m = 1707 .-.,O7$23 = 1,.73234.17 .-.,-TQA_l) , M= 07 17 aA_

3, s=m+2,m+3,....,A—1.

5. Proof of main result. Proof of Theorem 1.1. Since 2™ /m 1 oo it is easy to show
that there exists an increasing sequence of positive integers {my, : kK € P} such that

oo

S s <. 3)
k=1 M

F=1ogm,  osmx

2 o (4)
28mk 1 9my

< .
Mi—1 kmy,

Let
JAE @)= 3 (@),
{l:2m;<min(A,B)}
where
1
)\l =
my
and

a (z,y) == g4 (Dgzm;+1 (l‘) — Dy2m, ({L‘)) (Dg2my+1 (y) — Dozm, (y)) .
First, we prove that the martingale f := (f(AvB) A, Be N) belongs to the Hardy
space Hy /3 (G x G). Indeed, since

lally < c2°™,

0, if min (A4, B) < 2my,

Saa.2mak (7,y) = { ay (z,y), ifmin (A4, B) > 2my,

we can write
AP (2,y) = > Nar (z,y) = Y MeSoa gnax (x,y)
{l:2m;<min(A,B)} k=0
from (3) and Theorem W3 we conclude that f € Hy/; (G x G).

Now, we investigate the Fourier coefficients. Since

/ FAB) () w; () w; () dpe (2, )

GxG
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(i,7) ¢ U {22, .. 22mtl 1)

x{22me .. 22metl 1}

- (i,7) € {2%mw .. 2%metl 1}

x{22mk . 22metl 1) min(A, B) < 2my,
dmy, (i, ) € {22m*, ..., 22meFL 1}

ma e {22me L 22metl 1 min(A, B) > 2my,

we can write (see (2))

gimi (4,7) € {22k, . 22metl 1}
me T {22me L 02metl ) g =1,2,
o G g Uz o
) k=1
x{22me . 22metl 1},

aeey

fi,5) =

Let g, = 220 4 22m6=2 ... 4 22 4+ 20 Then we can write

qmy, — -1 qmg, — 1

qu,k7quf( Z Z Sigf (x,y)
G i=0 =0

22mk_1 22mk_1
q E g Siif (z,y)
ME  §=0 7=0

Gmy, —1 22mk _q

+7 Z Z Siif (x,y)
qm’w' 22k
22Mk 1 Qmy —
+7 Z Z Siif (z,y)
qu i=0 =227k

Gmy, =1 Gm), —

+7Z ZS,jfmy

qu = 22"”kj 22my,

=I+IT+1IT+1V.
Let ( € {22k . qm, — 1} x {2%™, .., ¢y, — 1}. Then from (6) we have
i—1 5—1
Siaf (@y) =D Fw.p)wy(@)w,(y)
v=0 pu=0

—12 'ml+1 12'ml+1 1

k
XYY Femmimn

=1 v=2" =2"

4 z_: Z J/c\(l/, ,U,) ’U)u(x)wu(y)

v=22mk =22

D227n,l+1 (:L’) — D227n.l ({E)) X (D22ml+1 (y) — D22ml (y))
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24mk
42 (Di(o) = Dy (2)) (D35) = Do ()
substitute (8) in IV, we have
v
k—1

1 a2 24ml
=z —— (g, — 2°™) Z - (Dgzrmy1 () — Doz, ()

Mk =1

X (Dg2my+1(y) — Da2my (y))

S (Dia) — Dyen ()

j=92m j=o2my,

X (Dj(y) — Dazmy (y))

1 24

Qm,, Tk

=1Vy + IV;.
Since
Dj+227”k (.’L‘) = D227nk (.’I;) + 'LU227nk (:L‘)DJ (.’I;), j = 0’ 1, ceey 2277Lk
for IV, we can write
1 94ma Gmy—1—1 Gmy—1—1
IVy = ————wgzmy (z)wgzmy (y) Z D;(x) Z Dj(y)
Ty Tk i=0 3=0
1 24mk 9
= amikw?mk (T)wy2m,, (y)q7nk—1quk71 (x)qukfl (y)
Since
|Don(z)] < 2", neN, z€G
by (4) and (5) we obtain
28ml ka
v <C
| 1| Z k:mk
Combining (9)-(11) we have
Cayy 1 C2mx
vz St K, @) (K )] - o

Let
(l,]) S ({22mk,,,.’qu — 1} X {07]_7 .“722mk _ 1})

U({0,1,...,2%™ — 1} x {22, .. g, — 1})
u({0,1,...,2>™ —1} x {0,1,...,2°™ —1}) .

Then from (6), (4) and (5) it is easy to show that
k—122mitl 1 92mitl_g

-~

Suf@l<Y > Y |fem)

l=0 V:22/’nl I_[l:22/'nl

= 28m szk
my mg

=

(10)
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Consequently
1 227nk_1227nk_1
1| < - Z |Si.5f (,y)]
Ime 20 j=o
dmy mi me
< 022 2 < C2
Ty, kM kmy,
22mk m _22mk 9mk oMy
7] < 2 W =27 270 27
M kmk kmk
c2m
I < .
| | - kmy

Combining (7), (9)-(15) we obtain that

Capr1 c2mx

Tamgeim S (@:9)| 2 B (@)1 K, ()] =

Let (z,y) € ILo0 T2 5 pl22%2 1) 1) € {0,1, ..., my, — 3} x {0,1,...,my — 3}.

2my, 2my,
Then from Lemma 4.1 we can write

Gt | K ()] = €270

and
qufl ‘Kq"%*l(y)‘ Z C’24l27
consequently,
s o0 ] 2 2050
C Al 44l C92mk
J‘Imkﬂmk f(xay)‘ Z m7k2 1 2 Tm
Denote
Alme) = {(11,12) 10 <l Sy = 3,0 <1 < Tl 1y > T
and
Cc2me
ay 1= .
mg
Since (see (17) and (I1,l2) € A (my))
C . ., C2m
‘Uka7kaf($7y)’ > mi]ﬂ? ko — [
Cc2me
Z = QL
my

we have

,u{(x,y)EGxG:

aqu7quf($vy)‘ 2 Cak}

1,1 o,
> Z 0 {(x,y) € It It ‘o'ququkf(l’,y)’ > ak}

(ll ,lg)eA(Wlk)

my kmk ’
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[(me/4]  my—3 1 1 1 1
11=0 ly=[my/4]—11 21, +5=0 T2m ), —1=0 T21545=0 T2m ), —1=0
l1,014+2 lo,lo+2
1% <I2mk X Ika )

1 C
2 c Z Z 9211+2l2 2 QmT/kT

l1:O lg:[mk/4]—l1

Consequently 2
(077 ('u {(:L’,y) : ’quk’%nkf(x’y)‘ 2 COZk})

QM m2
>C —k — COmy, > 0 as k — oo,
my 2"k
sup‘am,me =
k Ty dmp weak—Ly /o

= Sl]ipili%)\ (u{(w,y) €GxG:oq, g fl@,y)> )\})2 = +o00.

Theorem 1.1 is proved. =
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