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Abstract. We enalarge the amount of embeddings of the group G of invertible transformations

of [0, 1] into spaces of bounded linear operators on Orlicz spaces. We show the equality of the

inherited coarse topologies.

1. Introduction. This paper is another step in discussing de�nitions of coarse topolo-

gies on the group of invertible transformations. The consideration was started in [CK]

and then continued in [B1], [B2].

Let m denote the Lebesgue measure on [0, 1] The group G of all invertible transfor-

mations of [0, 1] consists of functions τ : [0, 1]→ [0, 1] such that τ is invertible (injective

and surjective) and both τ , τ−1 are Borel measurable and nonsingular (m(A) = 0 i�

m
(
τ−1(A)

)
= 0). Maps equal almost everywhere are identi�ed.

We say that φ : [0,∞) → [0,∞) is an Orlicz function if it is convex and φ(x) = 0

i� x = 0. We say that an Orlicz function φ satis�es the condition ∆′ globally if there

exists c > 0 such that φ(xy) ≤ cφ(x)φ(y) for x, y ∈ [0,∞). In this work Orlicz spaces

are equipped with the Luxemburg norm ‖·‖φ. The same symbol is used for norms of

operators on Orlicz spaces.
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If φ is an Orlicz function which satis�es the condition ∆′ globally then the formula

T (φ)
τ (f) =

(
f ◦ τ−1

) (
φ−1 ◦ ωτ

)
, (1)

where f ∈ Lφ(m), τ ∈ G and ωτ =
d(m◦τ−1)

dm denotes the Radon-Nikodym derivative of

the measure m ◦ τ−1 with respect to m, gives a bounded linear operator on the Orlicz

space Lφ(m). The inherited topologies from the strong operator topology on L
(
Lφ(m)

)
coincide on G � it was proved in [CK] for Lp�spaces and then generalized in [B1], [B2]

for Orlicz spaces.

We generalize Formula (1) and obtain more sets of bounded linear operators on Lφ(m).

We show equality of the inherited topologies.

Basic information on Orlicz spaces can be found in [KR] and [RR]. An interesting

study of generating G in the inherited topology by two transformations is published

in [G2] and [P]. A characterization of Lp-spaces with a help of operators generated by

invertible transformations is given in [B3].

2. The extension. We start with a generalized de�nition of the embedding.

Definition 2.1. Let h : [0,∞)→ [0,∞) be a Borel measurable function and τ ∈ G. We

denote by ωτ the Radon-Nikodym derivative of the measure m ◦ τ−1 with respect to m.

We introduce an operator T
(h)
τ : L0(m) → L0(m), where L0(m) stands for the set of all

real m�measurable functions, by the formula

T (h)
τ (f) =

(
f ◦ τ−1

)
(h ◦ ωτ ) for f ∈ L0(m). (2)

The section of the operator T
(h)
τ to an Orlicz space Lφ(m) is denoted by T

(φ,h)
τ .

Proposition 2.2. Let τ ∈ G. Let φ be an Orlicz function which satis�es the condition

∆′ globally with a constant c > 0. Let us assume that for a Borel measurable function

h : [0,∞)→ [0,∞)

there exists λ > 0 such that h(x) ≤ φ−1(λx) for x ∈ [0,∞). (3)

Then T
(φ,h)
τ is a bounded linear operator on the Orlicz space Lφ(m) and∥∥∥T (φ,h)

τ

∥∥∥
φ
≤ max{1, cλ}.

Proof. It is clear that Formula (2) gives a linear operator. Let f ∈ Lφ(m) and ‖f‖φ = 1.

Let us denote d = max{1, cλ}. We obtain∫
[0,1]

φ ◦
∣∣∣T (φ,h)
τ

(
f
d

)∣∣∣dm =
∫
[0,1]

φ ◦ (|f |◦τ−1)(h◦ωτ )
d dm ≤ (by the ∆′ condition)

c
∫
[0,1]

(
φ ◦ |f |◦τ

−1

d

)
(φ ◦ h ◦ ωτ ) dm ≤ (the assumption on h)

c
∫
[0,1]

(
φ ◦ |f |◦τ

−1

d

)
λωτ dm ≤ (since φ is an Orlicz function and 1 ≤ d)

cλ
d

∫
[0,1]

(
φ ◦ |f | ◦ τ−1

)
ωτ dm = (change of variables) cλ

d

∫
[0,1]

(φ ◦ |f |) dm ≤
(since ‖f‖φ = 1) cλ

d ≤ (the de�nition of d) 1.

Therefore,
∥∥∥T (φ,h)

τ

(
f
d

)∥∥∥
φ
≤ 1,

∥∥∥T (φ,h)
τ (f)

∥∥∥
φ
≤ d and

∥∥∥T (φ,h)
τ

∥∥∥
φ
≤ d.
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Proposition 2.3. Let φ be an Orlicz function. Let us assume that for a Borel measurable

function h : [0,∞)→ [0,∞)

there exists η > 0 such that x ≤ φ(ηh(x)) for x ∈ [0,∞). (4)

Then
∥∥∥T (φ,h)

τ

∥∥∥
φ
≥ φ−1(1)

η for τ ∈ G.

Proof. We obtain
∫
φ ◦ T (φ,h)

τ

(
η χ[0,1]

)
dm =

∫
φ ◦ (η h ◦ ωτ ) dm ≥

∫
ωτdm = 1.

Therefore,
∥∥∥T (φ,h)

τ (η χ[0,1])
∥∥∥
φ
≥ 1 and

∥∥∥T (φ,h)
τ (φ−1(1) χ[0,1])

∥∥∥
φ
≥ φ−1(1)

η ,

which implies our thesis since
∥∥φ−1(1) χ[0,1]

∥∥
φ

= 1.

Corollary 2.4. Let φ be an Orlicz function which satis�es the condition ∆′ globally

with a constant c, a function h : [0,∞)→ [0,∞) be Borel measurable and both conditions

(3), (4) hold.

Then
φ−1(1)

η
≤
∥∥∥T (φ,h)

τ

∥∥∥
φ
≤ max{1, cλ}

for τ ∈ G.

3. Two approaches to coarse topologies. We recall the de�nition of the strong

operator topology.

Definition 3.1. If E,F are normed linear spaces then the strong operator topology

on the set L(E,F ) of bounded linear operators is given by the basis consisting of the

elements V (P, ε;x1, . . . , xn) = {Q ∈ L(E,F ) : (∀i ∈ {1, . . . , n}) ‖P (xi)−Q(xi)‖ < ε},
where P ∈ L(E,F ) is a bounded linear operator, vectors x1 . . . , xn ∈ E and ε > 0.

Remark 3.2. Whenever space E is separable and A ⊆ L(E,F ) is a bounded set (that

is (∃M > 0)(∀P ∈ A) ‖P‖ ≤ M), the strong operator topology on A is metrizable by

d(P,Q) =
∑
n∈N

‖P (fn)−Q(fn)‖
2n‖fn‖ for P,Q ∈ A, where {fn ∈ E \ {0} : n ∈ N} is a �xed

countable dense subset of E.

If φ, h are as in Proposition 2.2 then the Orlicz space E = Lφ(m) is separable, the

set Gφ,h = {T (φ,h)
τ : τ ∈ G} is bounded in the space L

(
Lφ(m)

)
and the strong operator

topology on Gφ,h is metrizable by the above metric.

Let us notice that the set Gφ,h is the image of the following map

T (φ,h): G 3 τ 7→ T (φ,h)(τ) := T
(φ,h)
τ ∈ L

(
Lφ(m)

)
.

We are ready to prove the following lemma. If S ⊆ [0, 1] then χS denotes the charac-

teristic function of S .

Lemma 3.3. Let φ be an Orlicz function which satis�es the condition ∆′ globally. Let a

Borel measurable function h : [0,∞)→ [0,∞) be nonzero on (0,∞) and there exist λ > 0

such that h(x) ≤ φ−1(λx) for x ∈ [0,∞). Then the map T (φ,h) : G → L(Lφ(m)) is an

injection.

Proof. Let us consider any two transformations τ 6= σ ∈ G. There exists a Lebesgue mea-

surable subset A ⊆ [0, 1] such that m(τ(A)4σ(A)) 6= 0, where 4 denotes the symmetric
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di�erence of sets. We obtain T
(φ,h)
τ (χA) = χτ(A) (h ◦ ωτ ) 6= χσ(A) (h ◦ ωσ) = T

(φ,h)
σ (χA)

since h(ωτ (x)), h(ωσ(x)) 6= 0 almost everywhere.

We de�ne coarse topologies on G.

Definition 3.4. Let φ be an Orlicz function which satis�es the condition ∆′ globally

with a constant c > 0. Let a function h : [0,∞)→ [0,∞) be Borel measurable and there

exist λ > 0 such that h(x) ≤ φ−1(λx) for x ∈ [0,∞).We will denote by Θφ,h the topology

on the group G, which is induced from the strong operator topology on Gφ,h by the map

T (φ,h).

Corollary 3.5. Let φ be an Orlicz function which satis�es the condition ∆′ globally.

Let a Borel measurable function h : [0,∞)→ [0,∞) be nonzero on (0,∞) and there exist

λ > 0 such that h(x) ≤ φ−1(λx) for x ∈ [0,∞). Then the topology Θφ,h on the group G

is metrizable.

Proof. The thesis follows from Lemma 3.3 and Remark 3.2.

We need the following result from general measure theory.

Lemma 3.6. Let (Ω,Σ) be a measurable space and let µ, ν measures on Σ, where µ is

�nite. If µ is absolutely continuous with respect to ν (that is ν(S) = 0 implies µ(S) = 0)

and limn→∞ ν(Sn) = 0 for a seguence {Sn} ⊆ Σ then limn→∞ µ(Sn) = 0.

Proof. The thesis follows from [H], Sec. 30, Theorem B.

Corollary 3.7. If τ ∈ G and {Sn : n ∈ N} is any sequence of Lebesgue measurable

subsets of [0, 1] then limn→∞m(τ(Sn)) = 0 i� limn→∞m(Sn) = 0 i�

limn→∞m(τ−1(Sn)) = 0.

Moreover, if φ is an Orlicz function, the above equivalences can be continued:

limn→∞m(Sn) = 0 i� limn→∞ ‖χSn‖φ = 0 i� limn→∞
∥∥χτ(Sn)∥∥φ = 0 i�

limn→∞
∥∥χτ−1(Sn)

∥∥
φ

= 0.

Proof. The �rst two equivalences are consequences of Lemma 3.6. The second sequence of

equivalences follows from the equality ‖χ
S
‖φ = 1

φ−1( 1
m(S) )

, which holds for any Lebesgue

measurable subset S ⊆ [0, 1] of nonzero measure m(S) 6= 0.

We present another approach to the topology we are interested in, based on the ideas

from [G1] and then continued in [B2].

Definition 3.8. Let Ξφ,h denote the topology on the group G, which is generated by

the base consisting of the following sets:

Uh (τ, ε, (Ii)
n
i=1) =

{
σ ∈ G : (∀k ∈ {1, . . . , n})

[
m ( τ (Ik) 4 σ (Ik) ) < ε

∧ ‖h ◦ ωτ − h ◦ ωσ‖φ < ε
] }

,

where τ ∈ G, ε > 0 is rational and (Ik)nk=1 is a �nite sequence of subintervals of [0, 1]

such that the ends of each Ik are rational.

We are at the point where one can formulate the following theorem.
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Theorem 3.9. Let φ be an Orlicz function which satis�es the condition ∆′ globally. Let

a Borel measurable function h : [0,∞)→ [0,∞) be nozero on (0,∞) and there exist λ > 0

such that h(x) ≤ φ−1(λx) for x ∈ [0,∞). Then Ξφ,h = Θφ,h.

Proof. Since the topology Θφ,h is metrizable (by Corollary 3.5) and the topology Ξφ,h
is de�ned by a countable local basis at every invertible transformation, it is enough to

show that limn→∞ τn = τ in Θφ,h i� limn→∞ τn = τ in Ξφ,h for any transformations

τ, τ1, . . . , τn, . . . ∈ G.
(i) First, let us assume that limn→∞ τn = τ in Θφ,h. Since U(σ, ε, I1, . . . , Im) =⋂m

k=1 U(σ, ε, Ik), to prove that limn→∞ τn = τ in Ξφ,h it is enough to show that the

following two conditions hold:

(a) limn→∞ ‖h ◦ ωτn − h ◦ ωτ‖φ = 0 and

(b) limn→∞m(τn(I)4τ(I)) = 0 for every subinterval I ⊆ [0, 1].

For the �rst condition, we observe ‖h ◦ ωτn − h ◦ ωτ‖φ =∥∥Tτn (χ[0,1]

)
− Tτ

(
χ[0,1]

)∥∥
φ
→ 0.

For the second condition, let us denote Sn = τn(I)4τ(I). First of all we claim that

limn→∞
∫
Sn
h ◦ ωτ = 0. We have

∫
Sn
h ◦ ωτ dm =

∫
[0,1]

∣∣χτn(I) − χτ(I)∣∣h ◦ ωτ dm =∫
[0,1]

∣∣χτn(I)h ◦ ωτ − χτ(I)h ◦ ωτ ∣∣ dm ≤
∫
[0,1]

∣∣χτn(I)h ◦ ωτ − χτn(I)h ◦ ωτn ∣∣ dm+∫
[0,1]

∣∣χτn(I)h ◦ ωτn − χτ(I)h ◦ ωτ ∣∣ dm =
∫
[0,1]

χτn(I)

∣∣∣T (φ,h)
τn (χ[0,1])− T

(φ,h)
τ (χ[0,1])

∣∣∣ dm+∫
[0,1]

∣∣∣T (φ,h)
τn (χI)− T (φ,h)

τ (χI)
∣∣∣ dm ≤

∫
[0,1]

∣∣∣T (φ,h)
τn (χ[0,1])− T

(φ,h)
τ (χ[0,1])

∣∣∣ dm+∫
[0,1]

∣∣∣T (φ,h)
τn (χI)− T (φ,h)

τ (χI)
∣∣∣ dm ≤ (by Jensen's inequality)

φ−1
(∫

[0,1]
φ ◦ (T

(φ,h)
τn (χ[0,1])− T

(φ,h)
τ (χ[0,1])) dm

)
+

φ−1
(∫

[0,1]
φ ◦ (T

(φ,h)
τn (χI)− T (φ,h)

τ (χI)) dm
)
.

The last two terms tend to 0 because norm convergence implies modular convergence

and φ−1(x)→ 0 when x→ 0+.

To �nish this part of the proof, we show that m(Sn) tends to 0. Let us de�ne the

measure mτ,h by the formula mτ,h(S) :=
∫
S
h ◦ ωτ = 0 for Lebesgue measurable subsets

S ⊆ [0, 1]. If mτ,h(S) = 0 then h (ωτ (x)) = 0 for m�almost all x ∈ S, ωτ (x) = 0

for m�almost all x ∈ S, m(τ(S)) =
∫
S
ωτ = 0 and, by nonsingularity of invertible

transformations, m(S) = 0. This means that m is absolutely continuous with respect to

mτ,h. Finally, the convergence mτ,h(Sn)→ 0 implies m(Sn)→ 0 by Lemma 3.6.

(ii) For the other direction, let limn→∞ τn = τ in Ξφ,h.

Since V (τ, ε, f1, . . . , fm) =
⋂m
k=1 V (τ, ε, fk), it is enough to show that

limn→∞

∥∥∥T (φ,h)
τn (f)− T (φ,h)

τ (f)
∥∥∥
φ

= 0 for every f ∈ L
(
Lφ(m)

)
.

(a) We assume that f = χI and I = [α, β], where 0 ≤ α < β ≤ 1. Let us denote Sn =

τn(I)4τ(I). We obtain
∥∥∥T (φ,h)

τn (χI)− T (φ,h)
τ (χI)

∥∥∥
φ

=
∥∥χτn(I)h ◦ ωτn − χτ(I)h ◦ ωτ∥∥φ

≤
∥∥χτn(I)(h ◦ ωτn − h ◦ ωτ )

∥∥
φ

+
∥∥h ◦ ωτ (χτn(I) − χτ(I))

∥∥
φ

≤ ‖h ◦ ωτn − h ◦ ωτ‖φ + ‖h ◦ ωτχSn‖φ.
The �rst term tends to 0 because τn tends to τ in Ξφ,h.

For the second term, ‖h ◦ ωτχSn‖φ =
∥∥∥T (φ,h)

τ

(
χτ(Sn)

)∥∥∥
φ
≤
∥∥∥T (φ,h)

τ

∥∥∥
φ

∥∥χτ(Sn)∥∥φ
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≤ d
∥∥χτ(Sn)∥∥φ, where ∥∥∥T (φ,h)

τ

∥∥∥
φ
≤ d as in Proposition 2.2.

Since m(Sn) tends to 0,
∥∥χτ(Sn)∥∥φ tends to 0 by Corollary 3.7.

(b) We assume that f ∈ Lφ(m) is an arbitrary function.

Let g =
∑m
k=1 αkχIk be any simple function, where Ik denotes a subinterval of [0, 1].

Then
∥∥∥T (φ,h)

τn (f)− T (φ,h)
τ (f)

∥∥∥
φ
≤
∥∥∥T (φ,h)

τn (f − g)
∥∥∥
φ

+
∥∥∥T (φ,h)

τn (g)− T (φ,h)
τ (g)

∥∥∥
φ

+∥∥∥T (φ,h)
τ (f − g)

∥∥∥
φ
≤ 2d ‖f − g‖φ +

∑m
k=1 |αk|

∥∥∥(T (φ,h)
τn − T (φ,h)

τ

)
χIk

∥∥∥
φ
.

Since ‖f − g‖φ can be smaller then any number ε > 0 and, by (a), the sum in the last

term tends to 0 as n tends to in�nity, the proof has been completed.

4. Equality of topologies. We formulate our main result.

Main Theorem 4.1. Coarse topologies Θφ,h on G coincide for all Orlicz functions φ

which satisfy the condition ∆′ globally and for all Borel measurable functions

h : [0,∞)→ [0,∞) such that h(0) = 0 and the following two conditions hold:

(∃λ > 0)(∀x, y ∈ [0,∞)) |φ(h(x))− φ(h(y))| ≤ λ|x− y|, (5)

(∃η > 0)(∀x, y ∈ [0,∞)) |φ−1(x)− φ−1(y)| ≤ η|h(x)− h(y)|. (6)

Proof. The equality h(0) = 0 and assumption (5) (when y = 0) imply h(x) ≤ φ−1(λx)

for x ∈ [0,∞). Since φ−1 is injective, property (6) shows that h is injective as well and

h(x) 6= 0 for x > 0. Therefore, the results from previous sections can be applied.

Let φ, h be any pair of functions which satisfy the assumptions of this theorem. We

show that Θφ,h = Θ1 or equivalently, Ξφ,h = Ξ1, where Θ1 := Θid,id,Ξ1 := Ξid,id and

id(x) = x.

(i) We prove that Ξφ,h ⊆ Ξ1. By metrizability of these topologies, it is enough to

show that if τn tends to τ in Ξ1 then it tends to τ in Ξφ,h.

The sequence (τn) tends to τ in Ξ1 i�

(a) limn→∞ ‖ωτn − ωτ‖1 = 0 and

(b) limn→∞m(τn(I)4τ(I)) = 0 for every subinterval I ⊆ [0, 1] of rational ends.

The sequence (τn) tends to τ in Ξφ,h i�

(a') limn→∞ ‖h ◦ ωτn − h ◦ ωτ‖φ = 0

and the same condition (b) holds.

We show that (a) implies (a'). Let us denote αn = ‖h ◦ ωτn − h ◦ ωτ‖φ. If αn 6= 0 then

1 =
∫
[0,1]

φ ◦
∣∣∣ 1
αn

(h ◦ ωτn − h ◦ ωτ )
∣∣∣ dm ≤ (by the ∆′ condition)

c
∫
[0,1]

φ
(

1
αn

)
φ ◦ |h ◦ ωτn − h ◦ ωτ |dm ≤ cφ

(
1
αn

) ∫
[0,1]
|φ ◦ h ◦ ωτn − φ ◦ h ◦ ωτ |dm,

where the last inequality holds since φ(|x− y|) ≤ |φ(x)− φ(y)| for x, y ≥ 0.

We apply (5) and continue the above inequalities:

1 ≤ cλφ
(

1
αn

) ∫
[0,1]
|ωτn − ωτ |dm = cλφ

(
1
αn

)
‖ωτn − ωτ‖1.

Since ‖ωτn − ωτ‖1 tends to 0 and both c, λ are constants, αn tends to 0 as well.

(ii) We show that Ξ1 ⊆ Ξφ,h. By Theorem 8 in [CK], Ξ1 = Ξp for 1 ≤ p <∞, where

Ξp = Ξg,g−1 for g(x) = xp. Therefore, it is enough to show that Ξp ⊆ Ξφ,h for some

1 < p <∞.
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By Lemma 3.7 of H. Hudzik in [B2], since φ satis�es the condition ∆2 globally (a

consequence of the ∆′ condition), there exists 1 < p < ∞ such that φ1/p(x + y) ≤
φ1/p(x) + φ1/p(y) for x, y ≥ 0.

Let us notice that for such p the following inequalities hold: |φ1/p(a) − φ1/p(b)| ≤
φ1/p(|a − b|) and

∣∣φ1/p(a)− φ1/p(b)
∣∣p ≤ φ(|a − b|) for a, b ∈ [0,∞) � it is enough to

substitute a = x+ y and b = y when a ≥ b. We show that if ‖h ◦ ωτn − h ◦ ωτ‖φ tends to

0 then
∥∥∥ω1/p

τn − ω
1/p
τ

∥∥∥
p
tends to 0, which will complete our proof.

We obtain
∥∥∥ω1/p

τn − ω
1/p
τ

∥∥∥p
p

=
∫
[0,1]

∣∣∣ω1/p
τn − ω

1/p
τ

∣∣∣p dm =∫
[0,1]

∣∣(φ ◦ φ−1 ◦ ωτn)1/p − (φ ◦ φ−1 ◦ ωτ )1/p
∣∣p dm ≤ ∫

[0,1]
φ ◦
∣∣φ−1 ◦ ωτn − φ−1 ◦ ωτ ∣∣ dm ≤

(by (5))
∫
[0,1]

φ ◦ (η|h ◦ ωτn − h ◦ ωτ |)dm.
Since ‖h ◦ωτn −h ◦ωτ‖φ tends to 0, ‖η(h ◦ωτn −h ◦ωτ )‖φ tends to 0 as well. Finally,

norm convergence implies modular convergence.

Remark 4.2. Functions h : [0,∞)→ [0,∞) in the above theorem are continuous (since

φ ◦ h is continuous by (5)) and injective (by (6)). Since also h(0) = 0, they are strictly

increasing. Moreover, limx→∞ h(x) = ∞ (by (6), when y = 0). They need not to be

concave.

Example 4.3. Let φ(x) = x2 and h(x) =


√
x for x ∈ [0, 1] ∪ (9,∞)

1
2x+ 1

2 for x ∈ (1, 4]
1
10x+ 21

10 for x ∈ (4, 9].
Then φ and h together satisfy the assumptions of Theorem 4.1 but h is not concave

since h′−(9) = 1
10 < h′+(9) = 1

6 .

Remark 4.4. In the previous Theorem 4.1, Assumption (5) gives (when y = 0)

h(x) ≤ φ−1(λx) for x ∈ [0,∞) and by Proposition 2.2,
∥∥∥T (φ,h)

τ

∥∥∥
φ
≤ max{1, cλ}.

On the other hand, Assumption (6) gives (when y = 0) x ≤ φ(ηh(x)) for 0 ≤ x <∞
and

∥∥∥T (φ,h)
τ

∥∥∥
φ
≥ φ−1(1)

η , by Proposition 2.3.
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