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Abstract. We discuss a conjecture about comparability of weak and strong moments of log-
concave random vectors and show the conjectured inequality for unconditional vectors in normed
spaces with a bounded cotype constant.

1. Introduction. Let X be a random vector with values in some normed space (F || ||)-
The question we will discuss is how to estimate || X||, = (E[|X||?)'/? for p > 1. Obviously
IX]l, > | X|l1 = E|| X]|| and for any continuous linear functional ¢ on F with |¢|. <1
we have || X|, > (E|¢(X)|P)}/P. It turns out that in some situations one may reverse
these obvious estimates and show that for an absolute constant C' and any p > 1,
EIX|7)/? < C(EIX|+ sup (Elp(X))"7).
el <1

This is for example the case when X has Gaussian or product exponential distribution.
In this note we will concentrate on the more general case of log-concave vectors.

A measure p on R is called logarithmically concave (log-concave in short) if for any
compact nonempty sets A, B C R" and A € (0,1),

pAA+ (1= X)B) > p(A) u(B)' .

By the result of Borell [3] a measure p on R™ with full dimensional support is log-concave
if and only if it is absolutely continuos with respect to the Lebesgue measure and has a
density of the form e=f, where f: R™ — (—o0, 00] is a convex function. Log-concave mea-
sures are frequently studied in convex geometry, since by the Brunn-Minkowski inequality
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uniform distributions on convex bodies as well as their lower dimensional marginals are
log-concave. In fact the class of log-concave measures on R™ is the smallest class of
probability measures closed under linear transformation and weak limits that contains
uniform distributions on convex bodies. Vectors with logaritmically concave distributions
are called log-concave.

In the sequel we discuss the following conjecture posed in a stronger form in [5] about
the comparison of strong and weak moment for log-concave vectors.

CONJECTURE 1.1. For any n dimensional log-concave random vector and any norm || ||
on R™ we have for 1 < p < oo,
(E[X[P)'/? < CEIX|| + C2 sup (Elp(X)[P)'/?, (1)

llell<1

where C1 and Cy are absolute constants.

In Section 2 we gather known results about validity of (1) in special cases. Section
3 is devoted to the unconditional vectors. In particular we show that Conjecture 1.1
is satisfied under additional assumption of unconditionality of X and bounded cotype
constant of the underlying normed space.

Notation. Let (g;) be a Bernoulli sequence, i.e. a sequence of independent symmet-
ric variables taking values +1. We assume that (g;) are independent of other random
variables.

By (&;) we denote a sequence of independent symmetric exponential random variables
with variance 1 (i.e. the density 272 exp(—v2|z])). We set & = £ = (&,...,&,)
for an n-dimensional random vector with product exponential distribution and identity
covariance matrix.

By (-, -) we denote the standard scalar product on R™ and by (e;) the standard basis
of R". We set B for a unit ball in £}, i.e. B} = {z € R": [|z|, < 1}. For a random
variable Y and p > 0 we write ||Y], = (E|Y|)!/P.

We write C' (resp. C(a)) to denote universal constants (resp. constants depending
only on parameter «). Value of a constant C' may differ at each occurence.

2. Known results. Since any norm on R"™ may be approximated by a supremum of
exponential number of functionals we get

PROPOSITION 2.1 (see [5, Proposition 3.20]). For any n-dimensional random vector X
inequality (1) holds for p > n with C1 =0 and Cy = 10.

It is also easy to reduce Conjecture 1.1 to the case of symmetric vectors.

PROPOSITION 2.2. Suppose that (1) holds for all symmetric n-dimensional log-concave
vectors X. Then it is also satisfied with constants 4C1 + 1 and 4Cs by all log-concave
vectors X.

Proof. Assume first that X has a log-concave distribution and EX = 0. Let X’ be an
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independent copy of X, then X — X’ is symmetric and log-concave. Moreover for p > 1,
(EIX|P)P = (Bl X - EX'|]P)/P < (BI|IX - X'||P)V/?,
E|lX — X'|| <E[X| + E|IX|| = 2E[ X]|
and for any functional ¢,
(Elp(X = X)P)P < (Elp(X) )P + (Elp(X)P)/P = 2(E|p(X)[P)"/?
Hence (1) holds for X with constant 2C; and 2C5.

If X is arbitrary log-concave then X — EX is log-concave with mean zero. We have
for any p > 1,

ENX|7)P < (E|X ~EX|P)Y? +E|X], EIX -EX| <2E|X]|
and for any functional ¢,

(Elp(X —EX) )P < (Elp(X)[P) /7 + [p(EX)| < 2(Elp(X) )7,
n

REMARK. Estimating || X]||, is strictly connected with bounding tails of || X||. Indeed by
Chebyshev’s inequality we have

PO X = el X[lp) < e
and by the Paley-Zygmund inequality and the fact that | X |2, < C||X]||, for p > 1 we
get
P(1X] > ZIX],) > min{ e 7).
C C

Gaussian concentration inequality easily implies (1) for Gaussian vectors X (see for
example Chapter 3 of [8]). For Rademacher sums comparability of weak and strong mo-
ments was established by Dilworth and Montgomery-Smith [4]. More general statement
was shown in [6].

THEOREM 2.3. Suppose that X =Y. vi&;, where v; € F and &; are independent symmet-
ric r.v’s with logarithmically concave tails. Then for any p > 1 inequality (1) holds with
absolute constants Cy and Cs.

This immediately implies
COROLLARY 2.4. Conjecture 1.1 holds under additional assumption that coordinates of

X are independent.

Proof. We have X = Z?:l e; X; with X; independent log-concave real random variables.
It is enough to notice that variables X; have log-concave tails and in the symmetric case
apply Theorem 2.3. General independent case may be reduce to the symmetric one as in
the proof of Proposition 2.2. u

The crucial tool in the proof of Theorem 2.3 is the Talagrand two-level concentration
inequality for the product exponential distribution [12]:

1
Az = 1—"(A+VIBy +tBY) < e /¢ t >0,

where v is the symmetric exponential distribution, i.e. dv(z) = % exp(—|z|)dz.
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In [5] more general concentration inequalities were investigated. For a probability
measure y on R™ define

M) =Tog [ €PFdu(a), (o) = sup(p,a) ~ A1)
y
and
B,(t) ={z e R": A,(z) <t}
One may show that B« (t) ~ v/tBY + tB'. Argument presented in [5, Section 3.3] gives

PROPOSITION 2.5. Suppose that for some o« > 1 and 8 > 0 and any convex symmetric
compact set K C R™ we have

1
p(K) > 3 = 1 — p(aK + B,(t) <e /P forallt > 0. (2)
Then inequality (1) holds with Cy = a and Cy = CB.

In [5] it was shown that concentration inequality (2) holds with o = 1 for symmetric
product log-concave measures and for uniform distributions on B> balls. This gives

COROLLARY 2.6. Inequality (1) holds with C; = 1 and universal Cs for uniform distrib-
utions on B balls 1 <r < oo.

Modification of Paouris’ proof [11] of large deviation inequality for £5 norm of isotropic
log-concave vectors shows that weak and strong moments are comparable in the Euclidean
case (see [1] for details):

THEOREM 2.7. If X is a log-concave n-dimensional random vector then for any Fuclidean
norm || || on R™ we have

EIXIP)” <C(EBIX|+ sup Elp(OP)).
Pllx=

3. Unconditional case. We say that a random vector X = (Xy,...,X,) has uncondi-
tional distribution if the distribution of (7 X1, ..., 7, X,,) is the same as X for any choice
of signs n1,...,n,. Random vector X is called isotropic if it has identity covariance ma-
tI‘iX, i.e. COV(XZ‘,XJ‘) = (Si’j.

THEOREM 3.1. Suppose that X is an n-dimensional isotropic, unconditional, log-concave

vector. Then for any norm || || on R™ and p > 1,
(B|x|")? < C(EJEN+ sup (Blp(X)[")'/7). (3)
llell«<1

Proof. Let T = {t € R™: ||t|x < 1} be the unit ball in the space (R, |.) dual to
(R™, ]| ||)- Then |jz|| = sup,cr(t,x). By the result of Talagrand [13] (see also [14]) there
exist subsets T,, C T and functions 7, : T — T,, n = 0,1,... such that m,(t) — ¢ for all
teT, #Ty =1, #T, < 22" and

D g1 (t) = ma (), )l2n < ClE?lelg(t,& = CE|£]. (4)
n=0
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Let us fix p > 1 and choose ng > 1 such that 270~! < 2p < 270, We have

11 = sup(t, X) < sup|{mn, (1), X |+sup2|wn+1 )= m®. X)L ()
We get
1/p 1/p 1/ 1/
(Esup|(m, (0, X)17) < (B s, X)) < (HT,) 7 sup (El(s, X)[7)1/7
teT SET SETnO
< 16sup(E|(t, X)IP)V7 = 16 sup (Blp(X)P)". (6)
llell<1

To estimate the last term in (5) notice that for u > 16 we have by Chebyshev’s
inequality

P(sup 3 (i) - mle) X |>usup2 I 1(6) = 7). X))

teT n=no

< P(amoatg {2 (8) = (6), X0] 2l g (1) = 7 (8), X))

Z ST Ps =5 X)| = ull(s — 8, X)|2n) < Z H#T  #Tu~2"

n=ng s€Tpt1 s’ €T, n=ngp
o] ] on ] 270 8 2p

< ) < 2(7) < 2(7) .

- Z (u) - u - U
n=nogo

Integrating by parts this gives

( (sup Z [{(rp1(t —ﬂn(t),XH)p)l/p

teT !
< sup Z {rng1 () — 7n(8), X)|2n (16+ <2p/oo up_l(ufm)mz)l/p)

teT n=no

< 32sup Z {1 (8) = 7 (£), X)[2n (7)

teT — no

The result of Bobkov and Nazarov [2] gives
1€t X0 < C|I(¢,E)|l»  for any t € R™ and r > 1. (8)
Thus the statement follows by (4)-(7). m

REMARK. The only property of the vector X that was used in the above proof was
estimate (8). Thus inequality (3) holds for all n-dimensional random vectors satisfying

(8)-

REMARK. Estimate (8) gives (E|o(X)[P)'/? < C(E|p(£)[P)!/P for any functional ¢, there-
fore Theorem 3.1 is stronger than the estimate from [7]:

(BIX|")'" < CEIE| ~ C(BJE] + s (Elo(E))'").

[l <
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In some situation one may show that E|&|| < CE||X]||. This is the case of spaces with
bounded cotype constant.

COROLLARY 3.2. Suppose that 2 < q < oo, F' = (R™, || ||) is a finite dimensional space
with a g-cotype constant bounded by f < oo. Then for any n-dimensional unconditional,
log-concave vector X and p > 1,

EIXIP)” < Cla ) (EIX] + sup El(X)P)!”),

where C(q, B) is a constant that depends only on q and (.

Proof. Applying diagonal transformation (and appropriately changing the norm) we may
assume that X is also isotropic.
By the result of Maurey and Pisier [9] (see also Appendix II in [10]) one has

Z €; 8 Z €i€;
By the unconditionality of X and Jensen s inequality we get

n

> e
i=1

We have E|X;| > £ (E|X;|?)!/2 = &, therefore
E[l€]l < CCi(q, B)E[X]|

El€ll = < Ci(q, B

E|lX|| = E >E

and the statement follows by Theorem 3.1. m

For general norm on R"™ one has

n

>

=1

n

E €;&;

i=1

n
E €€
i=1

This together with the similar argument as in the proof of Corollary 3.2 gives the follow-

E[lE=E < Clogn E

< Esup 6]
i

ing.
COROLLARY 3.3. For any n-dimensional unconditional, log-concave vector X, any norm
II'l| on R™ and p > 1 one has
BIxIP)/7 < O(logn EIX| + sup (Blp(X)F)7).
llell<
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