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Prologue

“You will have to name it,” Pierre said to his young wife, in the same tone

as if it were a question of choosing a name for little Irène.

The one-time Mlle Sklodovska reflected in silence for a moment. Then, her

heart turning toward her own country which had been erased from the map of

the world, she wondered vaguely if the scientific event would be published in

Russia, Germany and Austria- the oppressor countries-and answered timidly:

”Could we call it ’polonium’ ? ”

In the Proceedings of the Academy of Science for July 1898 we read: ” If the

existence of this new metal is confirmed we propose to call it polonium, from

the name of the original country of one of us.”

-from the book MADAME CURIE

A Biography by Ève Curie.

The Literary Guild of America,

INC. New York 1937 (page 161)
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In May, 1921, President Harding presented Maria Sk lodowska with one gram of ra-

dium. Later, in 1929, she donated a second gram of radium to help build The Radium

Institute in Warsaw (1932).

Maria Sk lodowska’s life, regardless of her fame, has immensely inspired fellow gener-

ations of scientists in Poland and abroad. Józef Marcinkiewicz was about two years old

when she was awarded her second Nobel Price (in chemistry, December 10, 1911). This

year we will celebrate the one hundredth anniversary of this event.

In 1939, following their secret protocol (signed by Molotov and Ribbentrop in August

23, 1939), Adolf Hitler (on September 1) and Joseph Stalin (on September 17) attacked

Poland hoping to erase it from the map of the world again. Józef Marcinkiewicz, like

Maria Sk lodowska forty years before, stood up for his beloved country. In August 1939,

when the Second World War was imminent, he came back from London to Wilno (Vil-

nius). He put on Polish military uniform to say no to the Nazis and the Bolsheviks.

”As a patriot and son of my homeland I would never attempt to refuse the

service to the country in such difficult time as war”.

- fragment of a letter of Józef Marcinkiewicz

to his adviser Antoni Zygmund, see [26]

Marcinkiewicz, along with 22 thousand Polish army officers, police members, land

owners -great patriots who dared to exhibit a love and pride of independent Poland, were

executed by NKVD murderers. By the order of J. Stalin, they were shot in the back of

the head and buried secretly in mass graves of gloomy forested sites near Starobielsk,

Ostashkovo and the most documented Katyń.

KATYŃ CAROL

Someday maybe a great musician will rise up,

will transform speechless rows of gravestones into a keyboard,

a great Polish song writer will compose a frightening ballad with blood and

tears.

[...]

And there will emerge untold stories,

strange hearts, bodies bathed in light...

And the Truth again will embody

The Spirit

with living words-of the sand of Katyń

- Kazimiera I l lakowiczówna

(translated by the author of this article)
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”...his early death may be seen as a great blow to Polish Mathematics, and

probably its heaviest individual loss during the Second World War”.

- remark by Professor Antoni Zygmund

about his pupil Józef Marcinkiewicz [11, 28, 39]

Good scientific communities, like families, honor the memory of their eminent members,

great patriots and martyrs. I devote my essay to the memory of Józef Marcinkiewicz and

all Polish mathematicians whose glorious scientific careers had come to a cruel end during

Nazi-Soviet occupation. Józef Marcinkiewicz, Stanis law Saks and Juliusz Pawe l Schauder

were inspiration to me. I am mindful of them not only as mathematicians.

Stanis law Saks (1897-1942) was born to a Polish-Jewish family. He joined the Polish

underground, was arrested and executed in November 23, 1942, by the German Gestapo

in Warsaw.

Words written on the wall of a cell by an anonymous prisoner of the Gestapo in Aleja

Szucha in Warsaw can be translated as saying:

Speaking of Poland is easy

working for it is harder

dying is harder still

but suffering is the hardest.

Juliusz Pawe l Schauder (1899 -1943), a Polish mathematician of Jewish origin who

was shot in Lwów by the Gestapo in September 1943. Immediately after that, his wife

Emilia and her daughter Ewa were hiding in the sewers. They eventually surrendered to

the Gestapo. Transported to the concentration camp in Lublin, Emilia died, her daughter

Ewa survived the camp.

In August 1944 the staff of The Radium Institute in Warsaw suffered the same fate

as the victims of the Katyń massacre, they were executed by a shot in the back of the

head. After the Second World War The Institute was named ”Maria Sk lodowska-Curie

Institute of Oncology”.

Acknowledgement. I feel highly honored by the invitation to speak at the Józef

Marcinkiewicz Centenary Conference in Poznań, the city of the poet Kazimiera

I l lakowiczówna, and the city where Marcinkiewicz got his last, unrealized, offer to work

(August 1939).

Heart-felt thanks to the organizers.

The author was supported by the NSF grant DMS-0800416 and the Academy of

Finland project 1128331.
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1. Introduction. The total record of accomplishments of Marcinkiewicz in his short life,

his talent, perceptions rich in concepts, and technical novelties, go far beyond my ability

to give full play within the confines of one article. The importance of Marcinkiewicz’s

short paper [27], see also [38], is reflected in the myriad applications and generalizations

[2, 3, 5, 6, 8, 10, 17, 36, 38] ; which earns the right to be called

Marcinkiewicz Interpolation Theory

Marcinkiewicz interpolation theorem came after the celebrated convexity theorem of M.

Riesz [32] and his student G.O. Thorin [37] . These fundamental works by M. Riesz, G.O.

Thorin and J. Marcinkiewicz deal with estimates of the L p-norms of an operator knowing

its behavior at the end-points of the interval of the exponents p , where the operator is

still defined. There are, however, some subtle differences between the Riesz-Thorin and

the Marcinkiewicz ideas. Marcinkiewicz approach can be adapted to nonlinear operators,

this is what we are going to demonstrate in the present paper. On the other hand,

the very elegant idea of complex interpolation by G.O. Thorin [37] has found numerous

applications, especially when dealing with sharp inequalities for singular integrals. The

interested reader may wish to take a note of the interpolation lemmas in [1].

In the present paper I will try to elucidate some new advances o f Marcinkiewicz

interpolation theorem which arise from a study of the nonlinear p-harmonic type PDEs,

[12, 13, 14, 16, 18, 19, 20]. The principal result in this paper can be described as follows:

Let (X,dx) be σ-finite measure space, L 2(X, V) the space of square integrable

functions valued in a finite dimensional inner product space V , and L 2
+

(X, V) a closed

subspace of L 2(X, V) . We study the orthogonal projection

Π ; L 2(X, V) onto−−→ L 2
+

(X, V)
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The standing assumption about the subspace L 2
+

(X, V) is that Π extends as a contin-

uous linear operator,

Π ; L s(X, V) onto−−→ L s
+

(X, V)

to some range of exponents s ∈ (s1 , s∞ ) , where 1 6 s1 < 2 < s∞ 6 ∞ . For example,

the L 2 -projection of vector fields in Rn onto gradient fields is represented by the Riesz

transforms, so s1 = 1 and s∞ =∞.

Now, choose and fix p ∈ ( s1, s∞) . The L p -projection of f ∈ L p(X,V) onto the space

L p
+

(X,V) is defined to be a function α ∈ L p(X,V) that is the closest, in L p -distance,

to f . This gives rise to a nonlinear continuous operator

Rp ; L p(X, V) onto−−→ L p
+

(X, V)

This operator can be viewed as p-harmonic variant of the Riesz transforms. The space

L p(X, V) is the natural domain of definition of Rp . However, we are interested in the

action of Rp on spaces different from L p(X, V) ; namely,

Rp ; L s(X, V) onto−−→ L s
+

(X, V) , with some exponents s 6= p

Theorem 1.1 (Interpolation of the L p-projections). Suppose

Rp ; L ri(X, V) onto−−→ L ri
weak(X, V) , i ∈ {1, 2} , where s1 6 r1 < r2 6 s∞

This means that for each i ∈ {1, 2} there is a constant Ci such that

meas {x ∈ X ; |Rpf(x) | > t } 6 Ci t
−ri

∫
X
| f(x) |ri dx , for all t > 0

whenever f ∈ L p(X, V) ∩L ri(X, V) .

Then for every r ∈ ( r1, r2 ) there exists a constant Cr such that∫
X
|Rpf(x) |r dx 6 Cr

∫
X
| f(x) |r dx

whenever f ∈ L p(X, V) ∩L r(X, V) .

The proof is immediate from a more general result that we included in Theorem 5.2,

see Section 5 and Section 6.

2. A Motivation from Hodge Theory. The Hodge decomposition of differential

forms provokes a nonlinear setting of Marcinkiewicz Interpolation.

2.1. The linear Hodge theory. Let X be an oriented Riemannian n-dimensional

smooth manifold (with or without boundary) [15, 22, 25, 30, 35]. To every point x ∈ X
and 0 6 ` 6 n there corresponds a linear space

∧`
x of `-covectors. This is an

(
n
`

)
-

dimensional inner product space:

〈α |β 〉dx = 〈α |β 〉
x

dx = α ∧ ∗β
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where dx stands for the unit n-covector induced by the metric and orientation of the

manifold, and ∗ ;
∧`
x →

∧n−`
x is the Hodge-star duality operator. The volume element

dx gives rise to a measure on X .

Let
∧`

=
∧`

(X) =
⋃
x∈X

∧`
x denote the boundle of `- covectors over X. One might

consider various classes of sections of this bundle; that is, differential forms. The class

of smooth `-forms will be denoted by C∞(X,∧`). There are two underlying differential

operators acting on forms: the exterior differential and its formal adjoint, called Hodge

codifferential

d ; C∞(X,∧`−1)→ C∞(X,∧`) , d∗; C∞(X,∧`+1)→ C∞(X,∧`)

The Hodge theory asserts that every differential `-form ω ∈ C∞(X,∧`) can be written

as

ω = du + d∗v + h , u ∈ C∞(X,∧`−1) , v ∈ C∞(X,∧`+1) , h ∈ C∞(X,∧`)

The exact component du , the coexact component d∗v , and the harmonic field h , dh =

d∗h = 0 , are determined uniquely once we impose suitable boundary conditions on

u , v , h (no conditions are required for compact manifolds without boundary), see [15,

22, 25, 30]. Under such boundary conditions these components are mutually orthogonal

in the space

L 2(X,∧`) = { ω ; ‖ω‖2
2

=

∫
X
ω ∧ ∗ω =

∫
X
〈ω(x) |ω(x) 〉dx <∞}

In fact this is the space where the Hodge decomposition theory is born. Let us look briefly

at the following two closed subspaces of L 2(X,∧`) ; those that consist of the exact and

coclosed forms, respectively:

L 2
+

(X ,∧`) = L 2 − closure of the forms du , with u ∈ C∞◦ (X ,∧`−1 )

L 2
−

(X ,∧`) = L 2 − closure of the forms β ∈ C∞(X ,∧`) such that d∗β = 0

Thus we have an orthogonal decomposition

L 2(X,∧`) = L 2
+

(X ,∧`) ⊕ L 2
−

(X ,∧`)

Let

E ; L 2(X,∧`) → L 2
+

(X ,∧`) and C ; L 2(X,∧`) → L 2
−

(X ,∧`)

denote the orthogonal projections. These operators are locally represented by singular

integrals (Riesz Transforms) and as such keep acting as continuous operators on every

L s -space, with 1 < s <∞, [22, 25, 30, 35]

E ; L s(X,∧`) → L s
+

(X ,∧`) and C ; L s(X,∧`) → L s
−

(X ,∧`)

Let us record the following generalization of the orthogonality of exact and coclosed forms∫
X
〈α(x) |β(x) 〉dx = 0 , whenever α ∈ L p

+
(X,∧`) and β ∈ L q

−
(X,∧`)

Hereafter p and q are Hölder conjugate exponents; that is, real numbers in the interval

(1 , ∞ ) that satisfy the Hölder relation p+ q = p · q .

These projection operators also act on L 1(X,∧`) with values, respectively, in exact

and coclosed forms of the Marcinkiewicz class L 1
weak(X,∧`) .
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2.2. The L p- projection. The quintessential problem is to find an exact differential

form α ∈ L p
+

(X,∧`) , p 6= 2 , which is the nearest possible in the L p-distance to a given

form ω ∈ L p(X,∧`) . In the pursuit of the solution we minimize the p-harmonic energy

integral

min
γ∈L p

+ (X,∧`)

∫
X
|ω(x)− γ(x) |p dx =

∫
X
|ω(x)− α(x) |p dx

Such form α ∈ L p
+

(X,∧`) solves the Euler-Lagrange equation

d∗|ω − α|p−2(ω − α) = 0 , (1)

Equivalently,

|ω − α|p−2(ω − α) def== β ∈ L q
−

(X,∧`) (2)

Here, we are dealing with Hölder conjugate exponents, p + q = p · q , and the Hodge

codifferential d∗ ; L q(X ,∧`) → D ′(X ,∧`−1) acting in the sense of distributions. Now,

by the very definition, the L p-projection onto exact forms is a nonlinear operator which

takes ω into α ,

Ep ; L p(X ,∧`) onto−−→ L p
+

(X ,∧`) , Epω = α (3)

It is plain that the operator Ep is bounded,

‖Epω‖p 6 ‖ω‖p (4)

But it is less obvious, because of nonlinearity, that Ep is also continuous; precisely, we

have: ∫
X
|Epω1 − Epω2 |p �

(∫
X
|ω1 − ω2 |p

)θ
·
(∫

X
|ω1 |p + |ω2 |p

)1−θ
(5)

for some exponent 0 < θ = θ(p) 6 1 . Throughout this text we shall make use of the

symbol � to indicate that the inequality holds with some positive constant, so-called

implied constant, in front of the expression after this symbol. The implied constants will

vary from line to line; their detailed dependence on the exponents and other parameters

can easily be perceived from the computation. The implied constants will never depend

on the functions of concern.

While the space L p(X ,∧`) is considered the natural domain of definition of the operator

Ep we shall depart from this space and move into the realm of exponents different from

p. A wider and unifying framework will be set up for such operators to capture the

essence of Marcinkiewicz interpolation.

3. Setting the Stage. ¿From now on (X ,dx ) will be an arbitrary σ-finite measure

space and V a finite dimensional vector space equipped with an inner product 〈 ·| ·〉 =

〈 ·| ·〉V and the induced norm | · | = | · |V = 〈 ·| ·〉1/2. We shall discuss L s-spaces,

1 6 s <∞, of dx-measurable functions on X valued in V ,

L s(X ,V) =
{
ω ; ‖ω ‖

s
=
(∫

X
|ω(x) |s

V
dx
) 1
s

<∞
}

Remark 3.1. The observant reader may wish to note that our subsequent considerations

remain valid for functions in X whose values ω(x) lie in a given inner product space Vx
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assigned to each point x ∈ X , like differential forms on Riemannian manifolds. Rigorous

treatment of this setting, however, would require introduction of relevant vector bundles

over X , so that ω would become a measurable section. For the sake of readability, we

do not enter this territory; instead, we confine ourselves to trivial bundle X× V .

3.1. The L 2-projections. Let us choose and fix a closed subspace L 2
+

(X) = L 2
+

(X ,V) ⊂
L 2(X ,V) and its orthogonal complement L 2

−
(X) = L 2

−
(X ,V) ⊂ L 2(X ,V). Thus, we

have an orthogonal decomposition

L 2(X) = L 2
+

(X) ⊕ L 2
−

(X) (6)

and the induced L 2-projections

Π
+

; L 2(X) onto−−→ L 2
+

(X) , Π− ; L 2(X) onto−−→ L 2
−

(X) , I = Π
+

+ Π−

In general these linear operators may, or may not, extend to any of L s-spaces with s 6= 2 .

Moreover, if they do extend, the range of such exponents depends on the decomposition

(6). Let us take for granted an assumption that

Π
+

; L q(X) into−−→ L q
weak(X) , for some 1 6 q < 2 (7)

meaning that for every t > 0 it holds

meas{x ; |Π
+
ω(x)| > t } � 1

tq

∫
X
|ω |q , whenever ω ∈ L 2(X) ∩L q(X) (8)

where the implied constant depends neither on t nor on the function ω . Of course the

same is true for the operator Π− . By virtue of Marcinkiewicz Interpolation Theorem

these two projections extend as continuous operators:

Π+ ; L s(X) onto−−→ L s
+

(X) , for all q < s 6 2 (9)

and

Π− ; L s(X) onto−−→ L s
−

(X) , for all q < s 6 2 (10)

where the spaces L s
+

(X) and L s
−

(X) are the closures of L 2
+

(X)∩ L s(X) and L 2
−

(X)∩
L s(X) in the norm of L s(X) , respectively. It is rather intriguing that a direct applica-

tion of Marcinkiewicz interpolation does not guarantee a uniform bound of the norms of

Π± as s approaches 2, though such uniform bounds are evident from the Riesz-Thorin

convexity theorem. Nevertheless, since the operators Π± are selfadjoint in L 2(X ,V) ,

we may appeal to Hölder’s duality to infer that

Π
+

; L s(X) onto−−→ L s
+

(X) , for all 2 6 s < p (11)

and

Π− ; L s(X) onto−−→ L s
−

(X) , for all 2 6 s < p (12)

where 1 6 q < 2 < p 6∞ is a Hölder conjugate pair; that is, q + p = q · p .

Now, a uniform bound of the s-norms with s ≈ 2 follows from the Marcinkiewicz

interpolation theorem as well. Let us summarize the above findings as

Π± ; L s(X) onto−−→ L s
±

(X) , for all q < s < p (13)

The spaces L s
+

(X) and L s
−

(X) can also be characterized through the following properties

L s
+

(X) = {α ∈ L s(X) ; Π
+
α = α } , L s

−
(X) = {β ∈ L s(X) ; Π−β = β }
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¿From now on we reserve the letters p , q for a pair of Hölder conjugate exponents in the

range

q < q 6 p < p , where
1

p
+

1

q
= 1

Let us conclude this subsection by recording the (p, q)- orthogonality equation, reminis-

cent of the familiar div-curl product equation [9, 21, 22, 24, 31]∫
X
〈α(x) | β(x) 〉 dx = 0 , for α ∈ L p

+
(X) and β ∈ L q

−
(X) (14)

This shows that the dual space to Lp
+

(X) is Lq
+

(X) , and the dual space to Lp
−

(X) is

Lq
−

(X) . In symbols, we have

Lp
+

(X)
F

= Lq
+

(X) , Lq
+

(X)
F

= Lp
+

(X)

Lp
−

(X)
F

= Lq
−

(X) , Lq
−

(X)
F

= Lp
−

(X)

Thus all the above are reflexive Banach spaces.

3.2. The Πp
+

and Πq
−

projections. To every a ∈ L p(X ,V) there corresponds exactly

one α ∈ L p
+

(X ,V) which is the nearest to a in the sense of L p-distance.∫
X
| a(x) − α(x) |p dx = min

γ∈L p
+ (X ,V)

∫
X
| a(x) − γ(x) |p dx

The variational equation for α takes the form

| a − α|p−2( a − α) ∈ L q
−

(X,V) (15)

In this way we have defined a nonlinear operator

Πp
+

; L p(X ,V) onto−−→ L p
+

(X ,V) , by the rule : Πp
+
a = α.

Similarly, to every b ∈ L q(X ,V) there corresponds exactly one β ∈ L q
−

(X ,V) which is

the L q-nearest to b . The analogous variational equation for β takes the form

| b − β|q−2( b − β) ∈ L p
+

(X,V) (16)

and defines a nonlinear operator

Πq
−

; L q(X ,V) onto−−→ L q
−

(X ,V) , by the rule : Πq
−
b = β.

Let us weld together the above variational equations by introducing so-called (p , q)-

system

Lemma 3.2. Given a pair f = (a , b ) ∈ L p(X ,V) ×L q(X ,V) there exists exactly one

pair φ = (α , β ) ∈ L p
+

(X ,V)×L q
−(X ,V) such that

| a − α|p−2( a − α) = b− β ∈ L q
−

(X,V) (17)

or, equivalently

| b − β|q−2( b − β ) = a− α ∈ L p
+

(X,V) (18)

Proof. One finds, uniquely, α ∈ L p
+

(X ,V) and β ∈ L q
−

(X ,V) by solving the following

strictly convex variational problem: given a pair f = (a , b) ∈ L p(X ,V) × L q(X ,V)
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find φ = (α , β) ∈ L p
+

(X ,V) × L q
−

(X ,V) such that

min
α′∈L p

+ (X ,V)

∫
X
| a − α′ |p − p 〈 b |α′〉 =

∫
X
| a − α |p − p 〈 b |α〉

or, equivalently,

min
β′∈L q

− (X ,V)

∫
X
| b − β′ |q − q 〈 a |β′〉 =

∫
X
| b − β |q − q 〈 a |β〉

The reader may wish to keep an eye on a duality between these two variational

problems; precisely, the solution of one of them yields the solution of the other via the

equations (17) and (18). In fact they can be given one aesthetically pleasing symmetric

form,

(a− α)p = (b− β)q ∈ L 1(X ,V) , (19)

Here we have introduced the notation vs def== |v|s−1v for the s-power of a vector v in a

normed space.

It is worthwhile to put the equation (19) in even more general framework.

3.3. The most general setting. Let A : X × V → V be a given function satisfying

the following requirements:

• Carathéodory regularity :

The function x→ A(x , v) is measurable for every v ∈ V
The function v→ A(x , v) is continuous for almost every x ∈ X
• Homogeneity :

A(x , λ v) = λp−1 · A(x , v) , for λ > 0

• Lipschitz condition:

|A(x , v1) − A(x , v2) | �
(
|v1 | + |v2 |

)p−2| v1 − v2 |
• Monotonicity condition:

〈A(x , v1) − A(x , v2) | v1 − v2 〉 �
(
|v1 | + |v2 |

)p−2| v1 − v2 |2

Remark 3.3. In the above inequalities the implied constants are independent of x ∈ X
and v1, v2 ∈ V . The Carathéodory regularity makes certain that the function x →
A(x , v(x)) is measurable whenever v = v(x) is measurable, by Scorza-Dragoni Theorem.

It is clear that for x fixed the mapping v → A(x , v) is invertible. Let its inverse be

denoted by v→ B(x , v) ; that is, for almost every x ∈ X , we have

B(x , ∗) ◦ A(x , ∗) = A(x , ∗) ◦B(x , ∗) = I : V→ V

3.4. The natural domain of definition. The problem of solving the most general

equation in its natural domain of definition reads as follows.

Problem 1. Given a pair f = (a , b) ∈ L p(X ,V) × L q(X ,V) solve the following

equation

A(x, a + α) = b + β , equivalently B(x, b + β) = a + α (20)
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for φ = (α , β) ∈ L p
+

(X ,V) × L q
−

(X ,V) .

A duality between the two equations at (20) is emphasized by the fact that the inverse

mapping v → B(x , v) satisfies the same requirements as v → A(x , v) , but with the

Hölder conjugate exponent q in place of p . The key to the existence and uniqueness of

the solutions lies in the (p, q)-orthogonality relation (14) between the unknown functions

α and β .

Theorem 3.4. The equation (20) has unique solution. Moreover∫
X
|α |p + |β |q �

∫
X
| a |p + | b |q (21)

Proof. Since in general the equation (20) is not arising from a minimization of a vari-

ational integral, the existence of the solutions cannot be established by a variational

method. The Minty-Browder theory of monotone operators [4], [29] will come to the

rescue. Fix a function a ∈ L p
+

(X) and consider a map T from the reflexive Banach

space L p
+

(X) into its dual L q
+

(X) , defined by the rule

Tα = Πq
+
A(x, a + α) ∈ L q

+
(X) , for α ∈ L p

+
(X).

A routine application of the requirements for A shows that this map is:

• continuous,

• strictly monotone; that is,∫
X
〈Tα1 −Tα2 |α1 − α2 〉 > 0 , whenever α1 6= α2 in L p

+
(X)

• and coercive; that is,

lim
‖α‖p→∞

∫
X〈Tα |α 〉
‖α ‖p

= ∞

The Minty-Browder theory asserts that T is bijective. Let b ∈ L q(X) be given, so

we are given an element Πq
+
b ∈ L q

+
(X) . There is exactly one α ∈ L p

+
(X) such that

Πq
+
A(x, a + α) = Πq

+
b , meaning that A(x, a + α) = b + β , where β ∈ L q

−
(X) .

A key step in obtaining estimate (21) is the (p, q)-orthogonality of α ∈ L p
+

(X) and

β ∈ L q
−

(X) . Using the properties imposed on A and B a computation runs as follows

| a + α |p � 〈 A(x, a + α) | a + α 〉 = 〈 A(x, a + α) | a 〉+ 〈 b + β) |α 〉
� | a + α) |p−1|a | + 〈 a + α | b 〉 − 〈 a |b 〉 + 〈α |β 〉

This yields

| a + α |p � | a |p + | b |q + 〈α |β 〉

On the other hand, in view of (20) it follows that

| b + β |q � | a + α |p � | a |p + | b |q + 〈α |β 〉

Summing these two inequalities, we obtain

| a + α |p + | b + β |q � | a |p + | b |q + 〈α |β 〉 (22)
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We arrive at the following point-wise estimate,

|α |p + |β |q � | a |p + | b |q + 〈α |β 〉 (23)

which, upon integration, gives the desired estimate (21).

4. Beyond the Natural Domain of Definition. It makes sense to consider the equa-

tion (20) in which the given pair f = (a , b) lies in L λp(X ,V) × L λq(X ,V) , so the

proper space in which to seek the solution φ = (α , β) is L λp
+

(X ,V) × L λq
−

(X ,V) ,

where λ is close enough to 1 so that λ q > 1 and λ p > 1 . Taking into an account the

projection operators Π± ; L s(X) → L s
±

(X) , q < s < p , we shall restrict ourselves to

the parameters λ such that

q < λq 6 λ p < p (24)

The estimates are similar to those in the proof of Theorem 3.4, with one principal ingre-

dient. Let us begin with a point-wise inequality

| a + α |λp + | b + β |λq � | a + α |λp � 〈 A(x, a + α) | (a + α) | a + α |(λ−1)p 〉

We decompose the vector field v = (a + α) | a + α |(λ−1)p as v = Π
+
v + Π−v , use the

equation A(x, a + α) = b + β , and integrate. By the orthogonality of β ∈ L λq
−

(X) and

Π
+
v ∈ L

λq
λq−1

+ (X) , we obtain

∫
X
| a + α |λp + | b + β |λq �

∫
X
〈 b | Π+v 〉 +

∫
X
〈A(x, a + α) | Π−v 〉

� ‖ b ‖λq ‖Π+v ‖ λq
λq−1

+ ‖ (a + α)p−1 ‖λq ‖Π−v ‖ λq
λq−1

� ‖ b ‖λq ‖ ‖ a + α ‖λp−p+1
λp + ‖ a + α ‖p−1

λp ‖Π−v ‖ λq
λq−1

where we have used boundedness of the operator Π+ ; L s(X)→ L s(X) with s = λq
λq−1

and the identity ‖v ‖s = ‖ a + α ‖λp−p+1
λp . With the aid of Young’s inequality the term

‖ a + α ‖λp can be absorbed by the left hand side. We thus obtain∫
X
| a + α |λp + | b + β |λq �

∫
X
|b |λq +

∫
X
|Π−v |s (25)

Now comes the principal ingredient in the proof; we have Π−α = 0 , so

Π−v = [ Π−(a + α)1+ε ]− [ Π−(a + α) ]1+ε + (Π−a)1+ε (26)

where ε = (λ− 1)p .

The s-norm of (Π−a)1+ε is controlled by the λp - norm of a , because the operator

Π− is bounded in the space L (1+ε)s(X) = L λp(X) ; namely,∫
X
|Π−v |s �

∫
X
|a|λp (27)

The first two terms in the right hand side of (26) form a power type commutator. Precisely,

we are dealing with a commutator of the linear operator Π− and the nonlinear map

v→ |v|εv with ε close to zero; the exponent ε can be both positive or negative. Here is

what a complex interpolation method yields [22, 23, 24, 33, 34].
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Theorem 4.1. Suppose a linear operator Π ; L r(X,V) → L r(X,V) is continuous for

all exponents r in the range 1 6 q < r < p 6∞ . Then for every 1 6 q < s < p 6∞ ,

we have

‖ Π(v1+ε) − (Πv)1+ε ‖s � |ε | · ‖ v1+ε ‖s , whenever
q

s
< 1 + ε <

p

s
This gives:

‖ [ Π−(a + α)1+ε ]− [ Π−(a + α) ]1+ε ‖s � |ε | · ‖ (a + α)1+ε ‖s = |ε| · ‖ a + α ‖1+ε
λp

Finally, we chose ε small enough, meaning that λ ≈ 1 , to absorb this last term by

the left hand side of equation (25). Combining with equation (27), we obtain∫
X
| a + α |λp + | b + β |λq �

∫
X
|b |λq +

∫
X
| a |λp (28)

Let us introduce the notation

[f ] = |a|p + |b|q [φ ] = |α|p + |β|q (29)

We just proved that:

Theorem 4.2. For all parameters λ sufficiently close to 1; precisely, for

λ ∈ (λ− , λ+) , where
q

q
6 λ− < 1 < λ+ 6

p

p
(30)

we have ∫
X

[φ]λ �
∫
X

[f]λ (31)

4.1. Acceptable solutions. We shall speak of (λ− , λ+) as the fundamental interval

for the equation (20), see Definition 5.3 for clarification of this notion. The estimate (31)

raises an interesting question. Suppose we are given f = (a , b) such that
∫
X [f]λ < ∞ ,

one might consider solutions φ = (α , β) of the equation (20) satisfying
∫
X[φ ]τ <∞ , for

some τ 6= λ. We assume that both exponents λ and τ lie in the fundamental interval.

Is it true that
∫
X[φ ]λ < ∞ and, therefore, the estimate (31) holds? In general the

answer to this question is ”yes”. However, the proof requires somewhat more elaborate

variants of the power type commutators and the associated estimates, like in Theorem

4.1. The interested reader may wish to consult [7] for such commutators to verify the

above statement. This affirmative answer also settles the case λ = 1 ; that is, when

the data f = (a, b ) belongs to the natural setting of the equation. The term acceptable

solution refers to a pair φ = (α , β) satisfying Equation (20) such that
∫
X[φ ]τ <∞ , for

some τ ∈ (λ− , λ+) . Thus, within the fundamental interval for τ , if the data [ f ] belongs

to L 1(X) , then the acceptable solutions actually belong to the natural setting of the

equation. This means that [φ ] ∈ L 1(X) and, in particular, such solutions are unique.

4.2. A nonlinear counterpart of the Riesz Transforms. Associated with each sys-

tem (20) is its operator

R ; L p(X)×L q(X)→ L p(X)×L q(X) , defined by Rf = φ

We regard R as a counterpart of the classical Riesz Transforms in L 2(Rn,V) . Actual

extension of the domain of definition of R may be accomplished based on estimates

of the acceptable solutions to the system (20). Such an approach is commonly realized
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by first estimating the operator in a conveniently chosen dense subspace of its natural

domain of definition, and then extending it in accordance with the estimate. We shall

work with the following dense subspace

L ∗(X)×L ∗(X) ⊂ L p(X)×L q(X) , where L ∗(X) =
⋂

16s6∞

L s(X ,V)

5. Marcinkiewicz Interpolation in a Nonlinear Context. This section takes on the

Marcinkiewicz interpolation theorem to the context of nonlinear equations (20). The idea

of decomposing and integrating functions over their level sets is the core of the matter.

In our nonlinear setting, however, one faces additional challenges because of insufficient

additivity properties of the solutions to (20); these properties proved very proficient in

case of the linear operators.

Definition 5.1. Whenever q/q 6 λ 6 p/p , the operator R will be said to satisfy

the weak λ-type inequality if

meas{x ; [Rf(x) ] > t } � 1

tλ

∫
X

[ f ]λ , for every t > 0

Here the implied constant is independent of f = (a, b) ∈ L ∗(X) × L ∗(X) . Thus, in

particular, the induced solution Rf = (α, β) ∈ L p(X)×L q(X) is implicitly assumed to

belong to L λp(X)×L λq(X) as well.

5.1. The main result. The following generalization of Marcinkiewicz Theorem turns

out particularly useful when applied to the p-harmonic type PDEs..

Theorem 5.2. Let λ− and λ+ be exponents, q/q 6 λ− < 1 < λ+ 6 p/p , for which R

is both of weak λ− -type and weak λ+ -type. Then for every τ ∈ (λ− , λ+) the operator

R is of strong τ -type, meaning that∫
X

[Rf ]τ �
∫
X

[f ]τ for all f ∈ L ∗(X)×L ∗(X). (32)

At this stage we shall make the following

Definition 5.3 (Fundamental Interval). The largest interval (λ− , λ+) , q/q 6 λ− <

1 < λ+ 6 p/p , for which R acts from L λ−(X) into−−→ L
λ−
weak(X) and from L λ+(X) into−−→

L
λ+

weak(X) , will be called the fundamental interval of the equation (20).

Remark 5.4. The point to make here is that in Section 4 we were able to establish the

estimate (31) only for λ′s sufficiently close to 1. In the above definition, however, we do

not insist on this assumption. Thus Theorem 5.2 broaden’s estimate (31) to be true in

the entire fundamental interval.

Proof. Let us refresh the equations

A(x, a + α) = b + β B(x, b + β) = a + α

and remind our notation

f = (a, b) φ = (α, β) = Rf

∫
X
〈α(x) |β(x) 〉 dx = 0
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For further notational convenience we introduce

A = a + α , B = b + β , H = (A,B) = f + Rf , [H ] = | A |p + | B |q

Thus the system of equations abbreviates to:

A(x,A) = B or, equivalently B(x,B) = A (33)

and we are reduced to showing that∫
X

[H(x) ]τ dx �
∫
X

[ f(x) ]τ dx , for τ ∈ (λ− , λ+ ) (34)

which is certainly true for τ = 1 , so we need only consider τ between 1 and λ = λ± ;

precisely, for τ satisfying

0 6
τ − 1

λ− 1
< 1 , where either λ = λ− < 1 or λ = λ+ > 1

We shall demonstrate the proof for 1 < τ < λ = λ+ . The case λ− = λ < τ < 1 goes in

an exactly similar way, which will be emphasized several times as the proof develops. We

observe that whenever vector fields A and B are coupled by the relations (33), they are

comparable in the following fashion

|A|p u 〈A |A(x,A) 〉 = 〈A | B 〉 = 〈B(x,B) | B 〉 u |B|q

5.2. Marcinkiewicz decomposition. For t > 0 and a given pair f(x) = (a, b) we

consider a decomposition:

f(x) = ft(x) + ft(x)

where

ft(x) = (at, bt) =

{
(a, b) = f(x) , if [ f(x) ] = |a(x)|p + |b(x)|q > t

0 if [ f(x) ] = |a(x)|p + |b(x)|q 6 t

Similarly

ft(x) = (at, bt) =

{
(a, b) = f(x) , if [f(x) ] 6 t

0 if [f(x) ] > t

Then we solve the equations for φ t(x) = (αt, βt) ∈ L p
+(X) × L q

−(X) and φ t(x) =

(αt , βt) ∈ L p
+(X)×L q

−(X), respectively.

A(x, at + αt) = bt + βt A(x, at + αt) = bt + βt

where ∫
X
〈αt(x) |βt(x) 〉 dx = 0

∫
X
〈αt(x) |βt(x) 〉 dx = 0

Caution. It is not true in general that φ(x) = φ t(x) + φ t(x) .

Let us denote

At = at + αt , Bt = bt + βt and At = at + αt , Bt = bt + βt

Ht = (At,Bt) [Ht ] = | At |p + | Bt |q

Ht = (At,Bt) [Ht ] = | At |p + | Bt |q

We shall also introduce the energy integrands
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Et(x) = 〈A − At | B − Bt〉 > 0 , Et(x) = 〈A −At | B − Bt〉 > 0

Lemma 5.5 (point-wise inequalities). We have

[H−Ht] � Et + [H] and [H−Ht] � Et + [H ] (35)

[H − Ht ] � Et + [Ht ] and [H − Ht] � Et + [Ht ] (36)

Proof. For all exponents 1 < p <∞ , we can write

|A − At|p � |A−At |2( |A|+ |At|)p−2 +

{
either |A |p

or |At |p

� 〈A −At | A(x,A) − A(x,At )〉 +

{
either [H ]

or [Ht ]

� 〈A −At | B − Bt 〉 +

{
either [H ]

or [Ht ]
= Et +

{
either [H ]

or [Ht ]

Similarly, for the exponent 1 < q <∞ ,

|B − Bt|q � |B − Bt |2( |B|+ |Bt|)q−2 +

{
either |B |q

or |Bt |q

� 〈B − Bt | B(x,B) −B(x,Bt )〉 +

{
either [H ]

or [Ht ]

� 〈B − Bt | A − At 〉 +

{
either [H ]

or [Ht ]
= Et +

{
either [H ]

or [Ht ]

Adding up the above inequalities we conclude with the desired estimate corresponding

to the lower subscript t > 0 .

[H−Ht] = |A − At|p + |B − Bt|q � Et +

{
either [H ]

or [Ht ]

In an exactly the same way we derive the inequalities for the upper superscript t > 0 .

Now, the (p, q)-orthogonality comes into play when integrating the truncated energy

functions Et and Et ,

Lemma 5.6 (The energy estimates). We have,

E tf :=

∫
X
Et(x) dx �

∫
X

[ ft ] +

∫
X

[ ft ]
1
p [H ]

1
q +

∫
X

[ ft ]
1
q [H ]

1
p

Similarly,

Etf :=

∫
X
Et(x) dx �

∫
X
[ ft ] +

∫
X

[ ft ]
1
p [H ]

1
q +

∫
X
[ ft ]

1
q [H ]

1
p
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Proof. Since a− at = at and b− bt = bt , we can write

Et = 〈A −At | B − Bt 〉 = 〈 at + α− αt | bt + β − βt 〉 =

− 〈 at | bt 〉 + 〈 at | B − Bt 〉+ 〈 bt | A − At 〉+ 〈α− αt | β − βt 〉 �

[ ft ] + [ ft ]
1
p (Et + [H ] )

1
q + [ ft ]

1
q (Et + [H ] )

1
p + 〈α− αt | β − βt 〉

In the last step we have used inequalities in Lemma 5.5. Then, with the aid of Young’s

inequality, the term Et can be absorbed by the left hand side.

Et � [ ft ] + [ ft ]
1
p ( [H ] )

1
q + [ ft ]

1
q ( [H ] )

1
p + 〈α− αt | β − βt 〉

Since α−αt ∈ L p
+(X) and β− βt ∈ L q

−(X) , the integral of the last term vanishes.

Hence, integrating over X yields the first inequality of the lemma. The second one is

proven in much the same way.

Now the assumption that the operator R is L λ
weak-type comes into play.

Lemma 5.7. Let the exponent τ lie between 1 and λ; that is, 0 < τ−1
λ−1 < 1. Then∫ ∞

0

tτ−1meas{x; [Ht(x) ] > t}dt �
∫
X

[f ]τ if 1 < τ < λ = λ+ (37)

and ∫ ∞
0

tτ−1meas{x; [Ht(x) ] > t} dt �
∫
X

[f ]τ if λ− = λ < τ < 1 (38)

Proof. We shall be concerned with the level sets {x ; Γ(x) > c t } , where c will be a

constant, again called implied constant, and the parameter t will run from 0 to ∞ .

This implied constant may alter from line to line, but this will have no effect on the

subsequent estimates of the integrals over the entire domain X . Therefore, whenever it

is convenient, we shall abbreviate the notation {x ; Γ(x) > c t } to {x ; Γ(x) � t } .

Let us take the case 1 < τ < λ = λ+ . We begin with the point-wise inequality [Ht(x) ] =

[ ft + Rft ] � [ ft ] + [Rft ] . Hence

meas{x; [Ht(x) ] > t} � meas{x; [ ft(x) ] � t} + meas{x; [Rft(x) ] � t}

Since the identity operator and R are both of L λ
weak-type, we can write∫ ∞

0

tτ−1meas{x; [Ht(x) ] > t}dt �∫ ∞
0

tτ−1meas{x; [ ft(x) ] � t} dt +

∫ ∞
0

tτ−1meas{x; [Rft(x) ] � t} dt

�
∫ ∞

0

tτ−1
(
t−λ

∫
X

[ ft(x) ]λ
)

dt +

∫ ∞
0

tτ−1
(
t−λ

∫
X
[ ft(x) ]λ

)
dt

= 2

∫ ∞
0

tτ−λ−1
(∫

[ f ]6t
[ f(x) ]λ dx

)
dt = 2

∫
X

[ f(x) ]λ
(∫ ∞

[ f ]

tτ−λ−1 dt
)

dx

=
2

λ− τ

∫
X
[ f(x) ]τdx �

∫
X
[ f(x) ]τdx



18 T. IWANIEC

as desired.

The case λ− = λ < τ < 1 is treated in much the same way; it begins with the point-wise

inequality [Ht(x) ] = [ ft + Rft ] � [ ft ] + [Rft ] . We leave the details to the reader.

6. The Interpolation Estimate, proof of Theorem 5.2. We aim to show that∫
X

[φ(x) ]τ dx �
∫
X
[ f(x) ]τ dx (39)

Equivalently, ∫
X
[H(x) ]τ dx =

∫
X

[ f(x) + φ(x) ]τ dx �
∫
X

[ f(x) ]τ dx (40)

Let us discuss in details the case 1 < τ < λ. We make use of (36), which yields [H ] �
Et + [Ht ] , and the energy estimate in Lemma 5.6 , to obtain

∫
X

[H(x) ]τ dx = τ

∫ ∞
0

tτ−1meas{x ; [H(x) ] > t } dt

� τ

∫ ∞
0

tτ−1meas{x ; [Ht(x) ] � t } dt

+ τ

∫ ∞
0

tτ−1meas{x ; [Et(x) ] � t } dt

�
∫
X

[f ]τ +

∫ ∞
0

tτ−2Etf dt

�
∫
X

[f ]τ +

∫ ∞
0

tτ−2
(∫

X
[ ft ] +

∫
X

[ ft ]
1
p [H ]

1
q +

∫
X

[ ft ]
1
q [H ]

1
p

)
dt

�
∫
X

[f ]τ +

∫ ∞
0

tτ−2
(∫

[f]>t

[ f ] + [ f ]
1
p [H ]

1
q + [ f ]

1
q [H ]

1
p

)
dt

=
τ

τ − 1

∫
X

[f ]τ +
1

τ − 1

∫
X

(
[ f ]τ−

1
q [H ]

1
q + [ f ]τ−

1
p [H ]

1
p

)
The last equality is just an application of Fubini’s Theorem. It is at this stage that we

may (and will do) separate [H ] from [ f ] without damaging the subsequent estimates.

By Hölder’s inequality it follows that,∫
X

[H(x) ]τ dx �∫
X
[f ]τ +

(∫
X

[ f ]τ
)1− 1

τq
(∫

X
[H ]τ

) 1
τq

+
(∫

X
[ f ]τ

)1− 1
τp
(∫

X
[H ]τ

) 1
τp

Finally, with the aid of Young’s inequality the term
∫
X [H ]τ in the right hand side

can be absorbed by the left hand side. It results in the desired estimate∫
X

[Rf(x) ]τ dx�
∫
X

[ f(x) ]τ dx +

∫
X

[H(x) ]τ dx �
∫
X

[ f(x) ]τ dx

We leave it to the reader to verify, in an exactly similar fashion, the case λ < τ < 1 ;

simply the subscript t should be replaced by superscript t .
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Finally, taking b = 0 in the above estimates the proof of Theorem 1.1 goes through

with hardly any changes.
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[11] K. Da̧browski and E. Hensz-Cha̧dzyńska, Jozef Marcinkiewicz (1910–1940) in commemo-

ration of the 60 th anniversary of his death, Fourier Analysis and Related Topicts, Banach

Center Publications, vol. 56, (2002), 1–5.

[12] L.D’Onofrio and T. Iwaniec, Interpolation theorem for the p-harmonic transform, Studia

Mathematica 159(3) (2003), 373–390.

[13] L.D’Onofrio and T. Iwaniec, The p-Harmonic Transform Beyond its Natural Domain of

Definition, Indiana University Mathematics Journal 53 (3) (2004), 667–702.

[14] L.D’Onofrio and T. Iwaniec, Notes on p- Harmonic Analysis , AMS, Contemporary

Mathematics, vol. 370 (2005), 25–49.

[15] G.F.D. Duff and D.C. Spencer, Harmonic tensors on Riemannian manifolds with bound-

ary, Ann. Math. (2), 56, (1952), 128–156.

[16] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta

Mathematica 92 (1997), 249–258.

[17] S. G. Kre..n, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, Transl.

of Math. Monographs, Vol. 54, Amer. Math. Soc., Providence R.I., 1982.

[18] T. Iwaniec, On Lp-integrability in PDEs and quasiregular mappings for large exponents,

Annales Academiae Scientiarum Fennicae Series A.I. Mathematica 7 (1982), 301-322.

[19] T. Iwaniec, Projections onto gradient fields and Lp-estimates for degenerate elliptic oper-

ators, Studia Mathematica 75 (1983), 293–312.

[20] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Annals of Mathematics 136

(2), (1992) 589-624.



20 T. IWANIEC

[21] T. Iwaniec, Nonlinear commutators and Jacobians, The Journal of Fourier Analysis and

Applications, Volume 3, Special Issue (1997), 775-796.

[22] T. Iwaniec, Nonlinear Differential Forms, Lectures in Jyväskylä International Summer
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