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Abstract. We show the general and precise conditions on the functions and modulus of conti-

nuity as well as on the entries of matrices generated the summability means and give the rates

of approximation of functions from the generalized integral Lipschitz classes by double matrix

means of their Fourier series. Consequently, we give some results on norm approximation. Thus

we essentially extend and improve our earlier results [Acta et Commentationes Universitatis

Tartuensis de Mathematica, Vol. 13 (2009), 11-24] and the result of S. Lal [Applied Mathemat-

ics and Computation 209 (2009) 346–350].

1. Introduction. Let Lp (1 ≤ p < ∞) [p = ∞] be the class of all 2π–periodic real–valued
functions (integrable in the Lebesgue sense with p–th power)[essentially bounded] over
Q = [−π, π] with the norm

‖f‖ := ‖f(·)‖
Lp =


(∫

Q

| f(t) |p dt
)1/p

when 1 ≤ p < ∞,

ess sup
t∈Q

| f(t) | when p = ∞
(1.1)

and consider the trigonometric Fourier series

Sf(x) :=
ao(f)

2
+

∞∑
ν=1

(aν(f) cos νx + bν(f) sin νx) (1.2)

with the partial sums Skf .
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Let A := (an,k) and B := (bn,k) be infinite lower triangular matrices of real numbers
such that

an,k ≥ 0 and bn,k ≥ 0 when k = 0, 1, 2, ...n, (1.3)

an,k = 0 and bn,k = 0 when k > n ,
n∑

k=0

an,k = 1 and
n∑

k=0

bn,k = 1, where n = 0, 1, 2, ... , (1.4)

and let, for m = 0, 1, 2, .., n,

An,m =
m∑

k=0

an,k and An,m =
n∑

k=m

an,k (1.5)

Bn,m =
m∑

k=0

bn,k and Bn,m =
n∑

k=m

bn,k.

Let the AB−transformation of (Skf) be given by

Tn,A,Bf (x) :=
n∑

r=0

r∑
k=0

bn,rar,kSkf (x) ( n = 0, 1, 2, ...) . (1.6)

As a measure of approximation by the above quantity we use the generalized modulus
of continuity of f in the space Lp defined for β ≥ 0 by the formula

ωβf (δ)Lp := sup
0≤|t|≤δ

{∣∣∣∣sin t

2

∣∣∣∣β ‖ϕ· (t) ‖Lp

}
, (1.7)

where
ϕx (t) := f (x + t) + f (x− t)− 2f (x) .

It is clear that for β > α ≥ 0

ωβf (δ)Lp ≤ ωαf (δ)Lp ,

and it is easily seen that ω0f (·)Lp = ωf (·)Lp is the classical modulus of continuity.
The deviation Tn,A,Bf − f with the lower triangular infinite matrix B, defined by

bn,r = 1
n+1 when r = 0, 1, 2, ...n and bn,r = 0 when r > n, and with the lower triangular

infinite matrix A, defined by ar,k = pr−k/
r∑

ν=0
pν when k = 0, 1, 2, ...r and ar,k = 0 when

k > r, was estimated by S. Lal [1, Theorem 2] as follows:

Theorem A. If

f ∈ Lp
β (ω)

=

f ∈ Lp : ωf (δ)Lp
β

:= sup
0≤|t|≤δ


π∫

0

|ϕx (t)|p
∣∣∣sin x

2

∣∣∣βp

dx


1
p

≤ ω (δ)

 ,

where ω is such that
ω (t)

t
is a decreasing function of t,
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{∫ π/(n+1)

0

(
t |ϕx (t)|

ω (t)

)p

sinβp tdt

}1/p

= O
(

(n + 1)−1
)

, (1.8)

and {∫ π

π/(n+1)

(
t−γ |ϕx (t)|

ω (t)

)p

sinβp tdt

}1/p

= O ((n + 1)γ) (0 < γ <
1
p

), (1.9)

then ∥∥∥∥∥ 1
n + 1

n∑
ν=0

1
Pν

ν∑
k=0

pν−kSkf − f

∥∥∥∥∥
Lp

= O

(
(n + 1)β+ 1

p ω

(
1

n + 1

))
, (1.10)

where Pn =
n∑

ν=0
pν with nonnegative and nonincreasing sequence (pν).

Since the condition (1.8) used in the estimate of the integral
∫ π

n+1
0 (from the proof of

Theorem 2 [1] of S. Lal) leads us to the divergent integral of the form
∫ π

n+1
0 t

−(1+β)
1−1/p dt under

the assumption β ≥ 0, therefore, instead of this condition, we shall take the following
one: {∫ π/(n+1)

0

(
|ϕx (t)|
ω (t)

)p

sinβp tdt

}1/p

= Ox

(
(n + 1)−1/p

)
. (1.11)

In the paper [1, (Proof of Theorem 2)] sin t
2 should be used instead of sin t.

In our theorems we will consider the pointwise deviation

Tn,A,Bf (x)− f (x)

with the mean Tn,A,Bf introduced at the beginning. We will formulate general and precise
conditions on the functions and the modulus of continuity as well as on the entries of the
matrices A and B and give the rates of approximation of functions from the generalized
integral Lipschitz classes by our double matrix means of their Fourier series. Consequently,
we give some results on norm approximation. Thus we essentially extend and improve
our earlier results (see [2]) and the result of S. Lal [1].

We shall write I1 � I2 if there exists a positive constant K, sometimes depending on
some parameters, such that I1 ≤ KI2.

2. Statement of the results. Let us consider a function ω of modulus of continuity
type on the interval [0, 2π], i.e. a nondecreasing continuous function having the following
properties: ω (0) = 0, ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) for any 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π.
It is easy to conclude that the function δ−1ω (δ) is a quasi nonincreasing function of δ.

Let, for such ω,

Lp (ω)β = {f ∈ Lp : ωβf (δ)Lp ≤ ω (δ)} .

It is clear that, for β ≥ α ≥ 0,

Lp (ω)α ⊂ Lp (ω)β .

Now, we can formulate our main results on the degrees of pointwise summability.
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theorem 1. Let f ∈ Lp (ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy{∫ π

n
π

n+1

(
|ϕx(t)|
ω(t)

)p

sinβp t
2dt
} 1

p

= Ox

(
(n + 1)−

2
p

)
,when 1 < p < ∞,

ess sup
t∈[ π

n+1 , π
n ]

| |ϕx(t)|
ω(t) sinβ t

2 |= Ox (1) , when p = ∞
(2.1)

and {∫ π
n+1

0

(
|ϕx(t)|
ω(t)

)p

sinβp t
2dt
} 1

p

= Ox

(
(n + 1)−

1
p

)
, when 1 < p < ∞,

ess sup
t∈[0, π

n+1 ]

| |ϕx(t)|
ω(t) sinβ t

2 |= Ox (1) , when p = ∞.
(2.2)

If the entries of our matrices satisfy conditions

bn,n �
1

n + 1
(2.3)

and
|bn,rar,r−l − bn,r+1ar+1,r+1−l| �

bn,r

(r + 1)2 for 0 ≤ l ≤ r ≤ n− 1, (2.4)

then ∣∣Tn,A,Bf (x)− f (x)
∣∣ = Ox

(
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)

+
1

n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

))
and, in the case 0 < β < 1− 1

p ,∣∣Tn,A,Bf (x)− f (x)
∣∣

= Ox

(
(n + 1)β

ω

(
π

n + 1

)[
(n + 1)1−β

n∑
s=0

bn,s (s + 1)β−1

])
,

for considered x.

theorem 2. Let f ∈ Lp (ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy (2.2) and{∫ π

π
n+1

(
|ϕx(t)|
tγω(t)

)p

sinβp t
2dt
} 1

p

= Ox ((n + 1)γ) , when 1 < p < ∞,

ess sup
t∈[ π

n+1 ,π]

| |ϕx(t)|
tγω(t) sinβ t

2 |= Ox ((n + 1)γ) , when p = ∞,
(2.5)

with a nonnegative γ such that β − γ < 1 − 1
p . If the entries of our matrices satisfy the

conditions (2.3) and (2.4), then∣∣Tn,A,Bf (x)− f (x)
∣∣

= Ox

{(n + 1)γq
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q

+

{
(n + 1)γq−1

n∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q


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and, in the case 0 < β − γ < 1− 1
p ,∣∣Tn,A,Bf (x)− f (x)

∣∣
= Ox

(n + 1)β+1/p
ω

(
π

n + 1

){
(n + 1)1−(β−γ)q

n∑
r=0

bn,r (r + 1)(β−γ)q−1

} 1
q

 ,

for considered x, where q = p
p−1 .

If the entries of the matrix B are as in Theorem A then we can formulate the above
theorem in the following simpler form.

theorem 3. Let f ∈ Lp (ω)β with 0 ≤ β < 1 − 1
p , and let ω satisfy (2.1) and (2.2). If

the entries of the matrix A satisfy the condition

|ar,r−l − ar+1,r+1−l| �
1

(r + 1)2 for 0 ≤ l ≤ r, (2.6)

then ∣∣∣T
n,A,( 1

n+1 )f (x)− f (x)
∣∣∣

= Ox

(
1

n + 1

n∑
r=0

1
r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

))
and, for 0 < β < 1− 1

p ,∣∣∣T
n,A,( 1

n+1 )f (x)− f (x)
∣∣∣ = Ox

(
(n + 1)β

ω

(
π

n + 1

))
,

for considered x.

theorem 4. Let f ∈ Lp (ω)β with 0 ≤ β < 1− 1
p , and let ω satisfy (2.2) and (2.5) with

a nonnegative γ such that β − γ < 1− 1
p . If the entries of the matrix A satisfy condition

(2.6), then ∣∣∣T
n,A,( 1

n+1 )f (x)− f (x)
∣∣∣

= Ox

{(n + 1)γq−1
n∑

r=0

1
r + 1

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q

 ,

where q = p
p−1 and, in the case 0 < β − γ < 1− 1

p ,∣∣∣T
n,A,( 1

n+1 )f (x)− f (x)
∣∣∣ = Ox

(
(n + 1)β+1/p

ω

(
π

n + 1

))
,

for considered x.

corollary 1. Under the assumptions of Theorem 4 on a function f , if (pν) is a nonin-
creasing sequence such that

Pτ

n∑
ν=τ

P−1
ν = O (τ) for any τ ≥ 0, (2.7)

then from Theorem 4 we obtain the corrected form of the result of S. Lal.
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remark 1. We note that, in the proof of the mentioned theorem of S. Lal [1] the condition

Pτ

n∑
ν=τ

P−1
ν = O (n + 1) for any τ ≥ 0,

is used, which holds for every nonnegative sequences (pk). Instead (2.7) should be used.

Consequently, we reformulate the results on the Lp estimate of the norm of the devi-
ation considered above.

theorem 5. Let f ∈ Lp (ω)β with 0 ≤ β < 1− 1
p . If the entries of our matrices satisfy

conditions (2.3) and (2.4), then∥∥Tn,A,Bf (·)− f (·)
∥∥

Lp = Ox

(
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)

+
1

n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

))
and, for 0 < β < 1− 1

p ,∥∥Tn,A,Bf (·)− f (·)
∥∥

Lp

= Ox

(
(n + 1)β

ω

(
π

n + 1

)[
(n + 1)1−β

n∑
s=0

bn,s (s + 1)β−1

])
.

theorem 6. Let f ∈ Lp (ω)β with 0 ≤ β < 1− 1
p . If the entries of matrix A satisfy the

condition (2.6), then ∥∥∥T
n,A,( 1

n+1 )f (·)− f (·)
∥∥∥

Lp

= Ox

(
1

n + 1

n∑
r=0

1
r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

))
and, in the case 0 < β < 1− 1

p ,∥∥∥T
n,A,( 1

n+1 )f (·)− f (·)
∥∥∥

Lp
= O

(
(n + 1)β

ω

(
π

n + 1

))
.

remark 2. In the case if p ≥ 1 (specially if p = 1) we can suppose that the expression
t−βω (t) is nondecreasing in t instead of the assumption β < 1− 1

p .

remark 3. Under the additional assumptions β = 0 and ω (t) = O (tα) (0 < α < 1), the
degree of approximation in Theorem 3 is O (n−α) , but in Theorem 4, is O

(
n

1
p−α

)
.

remark 4. If we consider the modulus of continuity ωf (δ)Lp
β

, then our theorems will
be true under the assumption that f ∈ Lp

β (ω) and with the following norm

‖f‖
L

p
β

:= ‖f(·)‖
L

p
β

=


(∫

Q

| f(t) |p
∣∣sin t

2

∣∣βp
dt
)1/p

when 1 ≤ p < ∞,

ess sup
t∈Q

{
| f(t) |

∣∣sin t
2

∣∣β} when p = ∞.
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3. Proofs of the results. We begin this section by some notations following A. Zyg-
mund [3].

It is clear that

Skf (x) =
1
π

∫ π

−π

f (x + t) Dk (t) dt

and

Tn,A,Bf (x) =
1
π

∫ π

−π

f (x + t)
n∑

r=0

r∑
k=0

bn,rar,kDk (t) dt,

where

Dk (t) =
1
2

+
k∑

ν=1

cos νt =

{
sin

(2k+1)t
2

2 sin t
2

for k 6= 2πr, r = 0, 1, 2, ...

k + 1
2 otherwise

and

|Dk (t)| ≤

{
π
|t| when 0 < |t| ≤ π,

k + 1 when t ∈ (−∞, +∞) .

Hence

Tn,A,Bf (x)− f (x) =
1
π

∫ π

0

ϕx (t)
n∑

r=0

r∑
k=0

bn,rar,kDk (t) dt.

We will prove our results for 1 < p < ∞ only. If p = ∞ we have to use the generalized
Hölder inequality instead the classical one.

3.1. Proof of Theorem 1. Let

Tn,A,B (x)− f (x) =
1
π

(∫ π
n+1

0

+
∫ π

π
n+1

)
ϕx (t)

n∑
r=0

r∑
k=0

bn,rar,kDk (t) dt

=
∫ π

n+1

0

+
∫ π

π
n+1

and

|Tn,A,Bf (x)− f (x)| ≤

∣∣∣∣∣
∫ π

n+1

0

∣∣∣∣∣+

∣∣∣∣∣
∫ π

π
n+1

∣∣∣∣∣ .
By the Hölder inequality

(
1
p + 1

q = 1
)

, and (2.2), for 0 ≤ β < 1− 1
p ,∣∣∣∣∣

∫ π
n+1

0

∣∣∣∣∣ ≤ (n + 1)
π

∫ π
n+1

0

|ϕx (t)| dt

≤ (n + 1)
π

{∫ π
n+1

0

[
|ϕx (t)|
ω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

n+1

0

[
ω (t)

sinβ t
2

]q

dt

} 1
q
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� (n + 1)1− 1
p ω

(
π

n + 1

){∫ π
n+1

0

[
1
tβ

]q

dt

} 1
q

� (n + 1)β
ω

(
π

n + 1

)
� 1

n + 1

n∑
s=1

(s + 1)β
ω

(
π

n + 1

)

≤ 1
n + 1

n∑
s=1

(s + 1)β
ω

(
π

s + 1

)
and, since sin t

2 ≥
t
π or

∣∣sin (2k + 1) t
2

∣∣ ≤ (2k + 1) sin t
2 for t ∈ [0, π] , we have∣∣∣∣∣

∫ π

π
n+1

∣∣∣∣∣ ≤ 1
π

∫ π

π
n+1

∣∣∣∣∣ϕx (t)
n∑

r=0

r∑
k=0

bn,rar,k

sin
(
k + 1

2

)
t

2 sin t
2

∣∣∣∣∣ dt

�
∫ π

π
n+1

|ϕx (t)|

∣∣∣∣∣
τ−1∑
r=0

r∑
k=0

(k + 1) bn,rar,k

∣∣∣∣∣ dt

+
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
n∑

r=τ

τ−1∑
k=0

bn,rar,r−k sin
(

r − k +
1
2

)
t

∣∣∣∣∣ dt

+
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
n∑

r=τ

r∑
k=τ

bn,rar,r−k sin
(

r − k +
1
2

)
t

∣∣∣∣∣ dt

= I1 + I2 + I3,

where τ =
[

π
t

]
for t ∈ (0, π].

Now we shall estimate the integrals of type I. So, using the Hölder inequality, by the
assumption (2.1)

I1 ≤
∫ π

π
n+1

|ϕx (t)|
τ−1∑
r=0

(r + 1) bn,rdt

=
n∑

s=1

∫ π
s

π
s+1

|ϕx (t)|
τ−1∑
r=0

(r + 1) bn,rdt �
n∑

s=1

s∑
r=0

(r + 1) bn,r

∫ π
s

π
s+1

|ϕx (t)| dt

≤
n∑

s=1

s∑
r=0

(r + 1) bn,r

{∫ π
s

π
s+1

[
|ϕx (t)|
ω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

s

π
s+1

[
ω (t)

sinβ t
2

]q

dt

} 1
q

�
n∑

s=0

s∑
r=0

(r + 1) bn,r (s + 1)−
2
p ω

(
π

s + 1

)
(s + 1)β−2/q

≤
n∑

s=0

s∑
r=0

(r + 1) bn,rω

(
π

s + 1

)
(s + 1)β−2

=
n∑

r=0

(r + 1) bn,r

n∑
s=r

ω

(
π

s + 1

)
(s + 1)β−2
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≤
n∑

r=0

(r + 1) bn,rω

(
π

r + 1

)
(r + 1)β−1

=
n∑

r=0

bn,rω

(
π

r + 1

)
(r + 1)β

�
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)
.

Since (2.3) and (2.4) we have

I2

=
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
τ−1∑
k=0

[
n−1∑
r=τ

(bn,rar,r−k − bn,r+1ar+1,r+1−k)
r∑

l=τ

sin
(

l − k +
1
2

)
t

+ bn,nan,n−k

n∑
l=τ

sin
(

l − k +
1
2

)
t

]∣∣∣∣∣ dt

�
∫ π

π
n+1

|ϕx (t)|
t2

τ∑
k=0

[
n−1∑
r=τ

bn,r

(r + 1)2 + bn,nan,n−k

]
dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

[
(τ + 1)

n−1∑
r=τ

bn,r

(r + 1)2 + bn,n

τ∑
k=0

an,n−k

]
dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

[
(τ + 1)

n−1∑
r=τ

bn,r

(r + 1)2 + bn,n

]
dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

(τ + 1)
n−1∑
r=τ

bn,r

(r + 1)2 dt + bn,n

∫ π

π
n+1

|ϕx (t)|
t2

dt

≤
n∑

s=1

∫ π
s

π
s+1

|ϕx (t)|
t2

(τ + 1)
n−1∑
r=τ

bn,r

(r + 1)2 dt +
1

n + 1

∫ π

π
n+1

|ϕx (t)|
t2

dt

≤
n∑

s=1

(
(s + 1)

n∑
r=s

bn,r

(r + 1)2 +
1

n + 1

)∫ π
s

π
s+1

|ϕx (t)|
t2

dt

≤
n∑

s=1

(
(s + 1)

n∑
r=s

bn,r

(r + 1)2 +
1

n + 1

)

·

{∫ π
s

π
s+1

[
|ϕx (t)|
ω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

s

π
s+1

[
ω (t)

t2 sinβ t
2

]q

dt

} 1
q

�
n∑

s=1

(
(s + 1)

n∑
r=s

bn,r

(r + 1)2 +
1

n + 1

)
(n + 1)−

2
p ω
(π

s

){∫ π
s

π
s+1

[
1

tβ+2

]q

dt

} 1
q
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�
n∑

s=0

(
(s + 1)

n∑
r=s

bn,r

(r + 1)2 +
1

n + 1

)
(s + 1)β

ω

(
π

s + 1

)

≤
n∑

r=0

bn,r

(r + 1)2

r∑
s=0

(s + 1)β+1
ω

(
π

s + 1

)
+

1
n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

)

≤
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)

+
1

n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

)

≤
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)
+

1
n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

)
and

I3

=
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
n∑

r=τ

r∑
k=τ

bn,rar,r−k sin
(

r − k +
1
2

)
t

∣∣∣∣∣ dt

=
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
n∑

k=τ

n∑
r=k

bn,rar,r−k sin
(

r − k +
1
2

)
t

∣∣∣∣∣ dt

=
∫ π

π
n+1

|ϕx (t)|
t

∣∣∣∣∣
n∑

k=τ

[
n−1∑
r=k

(bn,rar,r−k − bn,r+1ar+1,r+1−k)
r∑

l=k

sin
(

l − k +
1
2

)
t

+ bn,nan,n−k

n∑
l=k

sin
(

l − k +
1
2

)
t

]∣∣∣∣∣ dt

�
∫ π

π
n+1

|ϕx (t)|
t2

n∑
k=τ

[
n−1∑
r=k

|bn,rar,r−k − bn,r+1ar+1,r+1−k|+ bn,nan,n−k

]
dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

[
n∑

r=τ

r∑
k=τ

|bn,rar,r−k − bn,r+1ar+1,r+1−k|+ bn,n

n∑
k=τ

an,n−k

]
dt

�
∫ π

π
n+1

|ϕx (t)|
t2

[
n∑

r=τ

r∑
k=τ

bn,r

(r + 1)2 +
1

n + 1

]
dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

[
n∑

r=τ

bn,r

r + 1
+

1
n + 1

]
dt.

Further, the same calculation, as that in the estimate of I2 , gives the inequality

I3 �
n∑

s=1

∫ π
s

π
s+1

|ϕx (t)|
t2

[
n∑

r=τ

bn,r

r + 1
+

1
n + 1

]
dt

=
n∑

s=1

[
n∑

r=s

bn,r

r + 1
+

1
n + 1

]∫ π
s

π
s+1

|ϕx (t)|
t2

dt
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�
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)β
ω

(
π

s + 1

)
+

1
n + 1

n∑
s=0

(s + 1)β
ω

(
π

s + 1

)
.

If β > 0, then

|Tn,A,Bf (x)− f (x)|

� (n + 1) ω

(
π

n + 1

) n∑
s=0

(
bn,s +

1
n + 1

)
(s + 1)β−1

≤ (n + 1) ω

(
π

n + 1

)[ n∑
s=0

bn,s (s + 1)β−1 +
1

n + 1

n∑
s=0

(s + 1)β−1

]

= (n + 1)β
ω

(
π

n + 1

)[
(n + 1)1−β

n∑
s=0

bn,s (s + 1)β−1 + 1

]

≤ (n + 1)β
ω

(
π

n + 1

)[
(n + 1)1−β

n∑
s=0

bn,s (s + 1)β−1

]
Collecting these estimates we obtain the desired result. �

3.2. Proof of Theorem 2. With the notations of the above proof,∣∣∣∣∣
∫ π

n+1

0

∣∣∣∣∣ � 1
r + 1

r∑
s=1

(s + 1)β
ω

(
π

s + 1

)

≤

{
1

r + 1

r∑
s=1

(
(s + 1)β

ω

(
π

s + 1

))q
} 1

q

≤

{
(r + 1)γq−1

r∑
s=1

(
(s + 1)β−γ

ω

(
π

s + 1

))q
} 1

q

.

Furthermore, using the Hölder inequality, by the condition (2.5), we obtain the next
estimates

I1 ≤
∫ π

π
n+1

|ϕx (t)|
τ−1∑
r=0

(r + 1) bn,rdt

≤

{∫ π

π
n+1

[
|ϕx (t)|
tγω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

π
n+1

[
tγω (t)
sinβ t

2

τ−1∑
r=0

(r + 1) bn,r

]q

dt

} 1
q

� (n + 1)γ

{
n∑

s=1

∫ π
s

π
s+1

[
tγω (t)
sinβ t

2

τ−1∑
r=0

(r + 1) bn,r

]q

dt

} 1
q

� (n + 1)γ

{
n∑

s=1

(
s∑

r=0

(r + 1) bn,rω

(
π

s + 1

)
(s + 1)β−γ

)q (
π

s
− π

s + 1

)} 1
q

� (n + 1)γ

{
n∑

s=0

(
ω

(
π

s + 1

))q

(s + 1)(β−γ)q−2

(
s∑

r=0

(r + 1) bn,r

)q} 1
q
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� (n + 1)γ

{
n∑

s=0

(
ω

(
π

s + 1

))q

(s + 1)(β−γ)q−2
s∑

r=0

(r + 1)q
bn,r

} 1
q

� (n + 1)γ

{
n∑

r=0

(r + 1)q
bn,r

n∑
s=r

(
ω

(
π

s + 1

))q

(s + 1)(β−γ)q−2

} 1
q

≤ (n + 1)γ

{
n∑

r=0

bn,r

(
ω

(
π

r + 1

))q

(r + 1)(β−γ)q+q−1

} 1
q

≤ (n + 1)γ

{
n∑

r=0

bn,r

(
ω

(
π

r + 1

)
(r + 1)β−γ+1/p

)q
} 1

q

≤ (n + 1)γ

{
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q

and

I2 �
∫ π

π
n+1

|ϕx (t)|
t2

τ
n−1∑
r=τ

bn,r

(r + 1)2 dt + bn,n

∫ π

π
n+1

|ϕx (t)|
t2

dt

≤
∫ π

π
n+1

|ϕx (t)|
t2

n−1∑
r=τ

bn,r

r + 1
dt +

1
n + 1

∫ π

π
n+1

|ϕx (t)|
t2

dt

≤

{∫ π

π
n+1

[
|ϕx (t)|
tγω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

π
n+1

[
tγω (t)

t2 sinβ t
2

n−1∑
r=τ

bn,r

r + 1

]q

dt

} 1
q

+
1

n + 1

{∫ π

π
n+1

[
|ϕx (t)|
tγω (t)

sinβ t

2

]p

dt

} 1
p
{∫ π

π
n+1

[
tγω (t)

t2 sinβ t
2

]q

dt

} 1
q

� (n + 1)γ

{∫ π

π
n+1

[
tγω (t)

t2 sinβ t
2

n−1∑
r=τ

bn,r

r + 1

]q

dt

} 1
q

+
(n + 1)γ

n + 1

{∫ π

π
n+1

[
tγω (t)

t2 sinβ t
2

]q

dt

} 1
q

= (n + 1)γ

{
n∑

s=1

∫ π
s

π
s+1

[
tγω (t)

t2 sinβ t
2

n−1∑
r=τ

bn,r

r + 1

]q

dt

} 1
q

+
(n + 1)γ

n + 1

{
n∑

s=1

∫ π
s

π
s+1

[
tγω (t)

t2 sinβ t
2

]q

dt

} 1
q
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≤ (n + 1)γ

{
n∑

s=1

(
n−1∑
r=s

bn,r

r + 1

)q ∫ π
s

π
s+1

[
tγω (t)

t2 sinβ t
2

]q

dt

} 1
q

+
(n + 1)γ

n + 1

{
n∑

s=1

∫ π
s

π
s+1

[
tγω (t)

t2 sinβ t
2

]q

dt

} 1
q

≤ (n + 1)γ

{
n∑

s=1

(
n−1∑
r=s

bn,r

r + 1
ω
(π

s

))q ∫ π
s

π
s+1

[
tγ

t2 sinβ t
2

]q

dt

} 1
q

+
(n + 1)γ

n + 1

{
n∑

s=1

(
ω
(π

s

))q
∫ π

s

π
s+1

[
tγ

t2 sinβ t
2

]q

dt

} 1
q

� (n + 1)γ

{
n∑

s=1

(
n−1∑
r=s

bn,r

r + 1
ω
(π

s

))q

s(2+β−γ)q−2

} 1
q

+
(n + 1)γ

n + 1

{
n∑

s=1

(
ω
(π

s

))q

s(2+β−γ)q−2

} 1
q

≤ (n + 1)γ

{
n∑

s=0

n−1∑
r=s

bn,r

(r + 1)q

(
ω

(
π

s + 1

)
(s + 1)2+β−γ−2/q

)q
} 1

q

+
(n + 1)γ

n + 1

{
n∑

s=0

(
ω

(
π

s + 1

)
(s + 1)2+β−γ−2/q

)q
} 1

q

≤ (n + 1)γ

{
n∑

r=0

bn,r
1

(r + 1)q

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)(β−γ)+2/p

)q
} 1

q

+ (n + 1)γ

{
1

(n + 1)q

n∑
s=0

(
ω

(
π

s + 1

)
(s + 1)(β−γ)+2/p

)q
} 1

q

≤ (n + 1)γ

{
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)(β−γ)+1/p

)q
} 1

q

+ (n + 1)γ

{
1

n + 1

n∑
s=0

(
ω

(
π

s + 1

)
(s + 1)(β−γ)+1/p

)q
} 1

q

.



14 W lODZIMIERZ  LENSKI AND BOGDAN SZAL

Further, similarly as in the estimates of I2

I3 �
∫ π

π
n+1

|ϕx (t)|
t2

[
n∑

r=τ

bn,r

r + 1
+

1
n + 1

]
dt.

≤ (n + 1)γ

{
n∑

r=0

bn,r
1

r + 1

r∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q

+ (n + 1)γ

{
1

n + 1

n∑
s=0

(
ω

(
π

s + 1

)
(s + 1)β−γ+1/p

)q
} 1

q

.

If β − γ > 0, then

|Tn,A,Bf (x)− f (x)|

� (n + 1)γ+1
ω

(
π

n + 1

){ n∑
r=0

bn,r
1

r + 1

r∑
s=0

(s + 1)(β−γ)q−1

}1/q

+ (n + 1)γ+1
ω

(
π

n + 1

){
1

n + 1

n∑
s=0

(s + 1)(β−γ)q−1

} 1
q

= (n + 1)β+1/p
ω

(
π

n + 1

)
[

(n + 1)1−(β−γ)q
n∑

r=0

bn,r (r + 1)(β−γ)q−1

]1/q

+ 1


≤ 2 (n + 1)β+1/p

ω

(
π

n + 1

)[
(n + 1)1−(β−γ)q

n∑
r=0

bn,r (r + 1)(β−γ)q−1

]1/q

Collecting these estimates we obtain the desired result. �

3.3. Proof of Theorems 3 and 4. If we put bn,r = 1
n+1 in the above proofs, then the

desired estimates immediately hold true. �

3.4. Proof of Corollary 1. We have to show that the condition (2.7) and the monotonicity
of (pν) imply (2.6). Indeed, putting

ar,k =
pr−k

Pr

and taking τ = 1 in (2.7) we can see that

1 � P1

r∑
ν=1

1
Pν

≥ p0

r∑
ν=1

1
Pr

=
p0

Pr
r,

whence, by the monotonicity of (pν) we have

Pr+1 ≥ (r + 1) pr+1
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and therefore

|ar,r−l − ar+1,r+1−l| =
pl

Pr
− pl

Pr+1
= pl

(
1
Pr

− 1
Pr+1

)
= pl

Pr+1 − Pr

Pr
=

pl

Pr

pr+1

Pr+1

≤ pl

Pr

pr+1

(r + 1) pr+1
=

pl

(r + 1) Pr

≤ p0

(r + 1) Pr
� 1

(r + 1)2 .

Thus the desired implication follows. �

3.5. Proofs of Theorems 5 and 6. The proofs are similar to the above. In the estimates
under Lp norms with respect to x there will be the expressions like these on the left hand
side of our conditions (2.1) , (2.2) and (2.5) . Since f ∈ Lp (ω)β , the such norm quantities
will always have the same orders like these on the right hand side of the mentioned
conditions. Therefore the proofs follow without any additionally assumptions on f and
ω. �
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