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Abstract. One-term and multi-term fractional differential equations with a basic derivative of

order α ∈ (0, 1) are solved. The existence and uniqueness of the solution is proved using the fixed

point theorem and the equivalent norms designed for a given value of parameters and function

space. The explicit form of the solution obeying the set of initial conditions is given.

1. Introduction. Fractional differential equations are an important tool in the mathe-

matical modelling of many systems and processes in mechanics, physics, chemistry, bio-

chemistry, control theory, economics, engineering and bioengineering. Investigations on

fractional differential equations include solving methods, the existence and uniqueness of

solutions and studies of the properties of solutions as well as their applications. During

last decades they yielded many essential results and theory of fractional differential equa-

tions became an important part of pure and applied mathematics (compare monographs

and review papers [5, 6, 7, 9, 10, 13, 15, 16, 17, 18, 24] and the references therein). As

mentioned in monographs [7] and [17] fractional differential equations of higher order in-

clude a class of sequential fractional differential equations. Such equations are applied for

instance in hydrodynamics [4, 21, 22] and in theory of viscoelasticity [23]. Our aim is to

study a variation of sequential fractional differential equations with composed differential

operator including derivatives of a given order and a variable coefficient.

In the paper we consider nonlinear multi-term fractional differential equations depen-

dent on the basic fractional derivative of arbitrary real noninteger order α ∈ (0, 1). The

other types of sequential fractional differential equations were also studied in [7, 8, 19, 25].
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To prove the existence and uniqueness of the solutions in an arbitrary finite interval

we follow the fixed point method and apply the Banach theorem. Our aim is to pro-

pose an efficient method of proof. A crucial point in the proof is the application of a

newly-introduced one-parameter equivalent norms (and respective metrics) in the space

of continuous or continuous weighted functions.

The paper is organized as follows. In the next section we recall all the necessary

definitions and properties of fractional operators. We also construct one-parameter fam-

ilies of equivalent norms and respective metrics in the space of continuous and weighted

continuous functions in a finite interval. Then we prove that certain fractional integral

operators are bounded in these spaces endowed with a corresponding norm from the

proposed class. The basic integral operator is generalized to a mapping, which appears

to be a contraction under the respective assumptions on a parameter defining the norm

and metric on the functions space. Section 3 contains the main results - theorems on the

existence and uniqueness of the solution to a certain nonlinear one-term and multi-term

fractional differential equations. The paper is closed with a short discussion of the results

and their prospective extension to further types of fractional differential equations.

2. Preliminaries. In the paper we shall consider solutions of certain class of fractional

differential equations in the space of functions continuous in finite interval [0, b]. The

supremum norm on the C[0, b] space and the respective induced metric are given below:

|| f ||:= sup
t∈[0,b]

| f(t) | d(f, g) :=|| f − g || . (1)

The norm || · ||γ and the generated metric are active in the space of weighted continuous

functions, when Re(γ) ∈ (0, 1):

|| f ||γ := sup
t∈[0,b]

| tγf(t) | d′(f, g) :=|| f − g ||γ . (2)

The Cγ [0, b] space is then given as

Cγ [0, b] := {f ∈ C(0, b]; || f ||γ≤ ∞}. (3)

Remark. Both metric functions spaces < C[0, b], d > and < Cγ [0, b], d′ > are complete.

Now, we recall definitions of left-sided fractional operators. In our paper we shall

study fractional differential equations containing Riemann-Liouville or Caputo deriva-

tives. Both, the integral and derivatives, are defined as follows [7, 20].

Definition 2.1. Let Re(α) > 0. Then the left-sided Riemann-Liouville integral of order

α is given by the formula

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, (4)

where Γ denotes the Euler gamma function.

Let Re(α) ∈ (n− 1, n). Then the left-sided Riemann-Liouville derivative is defined as

(Dα
0+f)(t) =

(
d

dt

)n
(In−α0+ f)(t) t > 0. (5)
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Let Re(α) ∈ (n− 1, n). Then the left-sided Caputo derivative is defined as

(cDα
0+f)(t) = Dα

0+

[
f(t)−

n−1∑
k=0

f (k)(0)tk

k!

]
t > 0. (6)

Remark. In the paper we shall solve equations dependent on fractional derivatives of

real order α ∈ (0, 1). In this case fractional derivatives are defined by the formulas below:

(Dα
0+f)(t) = d

dt (I
1−α
0+ f)(t) (7)

(cDα
0+f)(t) = Dα

0+[f(t)− f(0)]. (8)

An important and characteristic feature of the above fractional operators is their com-

position rule [7, 20]. It will be applied in the transformation of the investigated equations

into their equivalent integral form as well as in the derivation of the corresponding initial

conditions.

Property 2.2. Let Re(δ) > Re(α) > 0. Then the following formulas

Dα
0+I

δ
0+f(t) = Iδ−α0+ f(t) (9)

cDα
0+I

δ
0+f(t) = Iδ−α0+ f(t) (10)

hold at any point t ∈ [0, b] when function f ∈ C[0, b]. If f ∈ Cγ [0, b], then the above

composition rules hold at any point t ∈ (0, b].

When orders of the fractional derivative and integral coincide, we obtain the compo-

sition rules analogous to the second main theorem of integral calculus.

Property 2.3. Let Re(α) > 0. Then the following formulas

Dα
0+I

α
0+f(t) = f(t) (11)

cDα
0+I

α
0+f(t) = f(t) (12)

hold at any point t ∈ [0, b] when function f ∈ C[0, b]. If f ∈ Cγ [0, b], then the above

composition rules hold at any point t ∈ (0, b].

In the procedure of transforming the considered fractional differential equation into an

equivalent integral equation we shall apply the stationary functions of Riemann-Liouville

or Caputo derivative. They are analogues of polynomial functions from classical calculus

and differential equations theory. For order α ∈ (0, 1) the continuous stationary function

of Caputo derivative is an arbitrary constant:

cDα
0+φ0(t) = 0 ∀t ∈ [0, b] ⇐⇒ φ0(t) = c.

Respectively, the only continuous weighted stationary functions of Riemann-Liouville

derivative are proportional to power function:

Dα
0+φ0(t) = 0 ∀t ∈ (0, b] ⇐⇒ φ0(t) = ctα−1

and belong to the C1−α[0, b] space.

In what follows we shall modify norms (1,2) to the equivalent ones on the C[0, b] and

C1−α[0, b] spaces respectively. To this aim we apply functions constructed using the

Mittag-Leffler function [7]. We define auxiliary functions dependent on parameters α, β
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and on free parameter κ, assuming α ∈ (0, 1), α− β > 0, κ ∈ R+ and t ∈ (0, b]:

eα,β,κ(t) := Γ(α− β)Eα,α−β(κtα) (13)

Eα,β,κ(t) := Eα−β,α−β(κtα−β) (14)

Eα,β,κ(t) := Γ(1− β)Eα,1−β(κtα) (15)

Eα,β,κ(t) := Eα−β,1−β(κtα−β). (16)

In the above formulas EA,B is the two-parameter Mittag-Leffler function (Re(A) > 0):

EA,B(z) :=

∞∑
k=0

zk

Γ(Ak +B)

determined (in general) on complex plane C for Re(A) > 0.

The following proposition describes integration properties of the introduced functions.

Proposition 2.4. If α ∈ (0, 1), α−β > 0 and κ ∈ R+, then the following formulas hold

in any interval (0, b]

Iα0+t
α−β−1eα,β,κ(t) =

tα−β−1

κ

[
eα,β,κ(t)− 1

]
(17)

Iα0+t
α−β−1Eα,β,κ(t) =

tα−1

κ

[
Eα−β,α(κtα−β)− 1

Γ(α)

]
(18)

Iα0+t
−βEα,β,κ(t) =

t−β

κ

[
Eα,β,κ(t)− 1

]
. (19)

Iα0+t
−βEα,β,κ(t) =

1

κ

[
Eα−β,1(κtα−β)− 1

]
. (20)

Solving the considered fractional differential equations we shall follow the methods

from differential equations theory. We start by transforming the fractional differential

equation into its equivalent integral form and then into a fixed point condition for a

mapping determined on the respective function space. To prove that this mapping is

contractive we extend Bielecki method of equivalent norms [2]. Similar modification of

norms was also developed in theory of fractional differential equations [1, 3]. Lakshmikan-

tham et al [13, 14] used in the scaling procedure a one-parameter Mittag-Leffler function

and proved the existence-uniqueness result for one-term fractional diferential equation

with Caputo derivative. We propose to apply in modification of norms the introduced in

(13-16) auxiliary functions. Mappings, which are not contractive with respect to standard

norms (1,2), become contractions after change of the norm and metric to the equivalent

ones, dependent on free parameter κ ∈ R+, provided κ is large enough.

Definition 2.5. In the C1−α[0, b] space we define a new norm and metric, provided

κ ∈ R+ and α− β > 0:

|| f ||1−α,κ:= sup
t∈[0,b]

| t1−αf(t) |
eα,β,κ(t)

d′κ(f, g) :=|| f − g ||1−α,κ (21)

|| f ||′1−α,κ:= sup
t∈[0,b]

| t1−αf(t) |
Eα,β,κ(t)

d′′κ(f, g) :=|| f − g ||′1−α,κ . (22)
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In the C[0, b] space, we define a new norm and metric assuming κ ∈ R+ and α − β > 0

(see also [13, 14] for β = 0)

|| f ||κ:= sup
t∈[0,b]

| f(t) |
Eα,β,κ(t)

dκ(f, g) :=|| f − g ||κ (23)

|| f ||′κ:= sup
t∈[0,b]

| f(t) |
Eα,β,κ(t)

d1
κ(f, g) :=|| f − g ||′κ . (24)

Proposition 2.6. Metrics d′κ and d′′κ are equivalent to the d′ metric in the C1−α[0, b]

space. Metrics dκ and d1
κ are equivalent to the d metric in the C[0, b] space.

Proof. The equivalence is implied by the set of inequalities fulfilled by the respective

norms for arbitrary function f ∈ C1−α[0, b]

|| f ||1−α
eα,β,κ(b)

≤|| f ||1−α,κ≤|| f ||1−α

|| f ||1−α
Eα,β,κ(b)

≤|| f ||′1−α,κ≤ Γ(α− β) || f ||1−α

and for arbitrary f ∈ C[0, b]

|| f ||
Eα,β,κ(b)

≤|| f ||κ≤|| f ||

|| f ||
Eα,β,κ(b)

≤|| f ||′κ≤ Γ(1− β) || f || .

Having defined the new norms, we shall study the properties of integral operator

Iα0+t
−β on the spaces of continuous and weighted continuous functions with norms (23,24)

or (21,22) respectively. Analyzing the formulas enclosed in the proposition below we note

that this operator is bounded in all the considered cases and that the constant on the

right-hand side is inversely proportional to parameter κ.

Proposition 2.7. Let α ∈ (0, 1).

(1) If β ≤ 0, then for any function f ∈ C1−α[0, b] the following inequalities hold (j ∈ N)

|| (Iα0+t
−β)jf ||1−α,κ≤

(
b−β

κ

)j
|| f ||1−α,κ . (25)

(2) If β > 0 and α− β > 0, then sequence (κm) exists such that limm−→∞ κm =∞ and

for any function f ∈ C1−α[0, b] the following inequalities hold (j ∈ N)

|| (Iα0+t
−β)jf ||′1−α,κm≤

(
AL
κm

)j
|| f ||′1−α,κm , (26)

where constant L is determined by condition

(α− β)(L+ 1) ≥ γmin (α− β)L < γmin

and constant AL looks as follows

AL =

L−1∑
k=1

Γ(α− β)

Γ(k(α− β) + α)
+ 1.
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(3) If β ≤ 0, then for any function f ∈ C[0, b] the following inequalities hold (j ∈ N)

|| (Iα0+t
−β)jf ||κ≤

(
b−β

κ

)j
|| f ||κ . (27)

(4) If β > 0 and α− β > 0, then then sequence (κm) exists such that limm−→∞ κm =∞
and for any function f ∈ C[0, b] the following inequalities hold (j ∈ N)

|| (Iα0+t
−β)jf ||′κm≤

(
BL
κm

)j
|| f ||′κm , (28)

where constant L is determined by condition:

(α− β)L ≥ γmin + β − 1 (α− β)(L− 1) < γmin + β − 1

and constant BL looks as follows

BL =

L−1∑
k=1

Γ(1− β)

Γ(k(α− β) + 1)
+ 1.

Proof. We begin with part (1) and observe that fractional integral Iα0+ is bounded in the

C1−α[0, b] space. Thus, it is enough to prove the case j = 1 as j > 1 follows from the

mathematical induction principle. Applying integration property (17) from Proposition

2.4 we obtain for arbitrary function f ∈ C1−α[0, b]:

|| (Iα0+t
−β)f ||1−α,κ= sup

t∈[0,b]

| t1−αIα0+t
−βf(t) |

eα,β,κ(t)
=

= sup
t∈[0,b]

| t1−αIα0+t
−βtα−1eα,β,κ(t) t

1−αf(t)
eα,β,κ(t)

|
eα,β,κ(t)

≤

≤|| f ||1−α,κ sup
t∈[0,b]

| t1−αIα0+t
−βtα−1eα,β,κ(t) |
eα,β,κ(t)

=

=|| f ||1−α,κ sup
t∈[0,b]

t−β

κ

[
1− 1

eα,β,κ(t)

]
≤

≤ b−β

κ
· || f ||1−α,κ .

In the proof of part (2) we use formula (18) from Proposition 2.4 and monotonicity

property of the Euler gamma function, namely for real argument greater than γmin
∼=

1.46163 this function is strictly increasing. We again prove the case j = 1 as formulas for

j > 1 are a straightforward corollary. Let us observe that for any given α and β fulfilling

condition α− β > 0, integer number L ∈ N exists such that

(α− β)(L+ 1) ≥ γmin (α− β)L < γmin. (29)

Let us denote

PL(t) =

L−1∑
k=1

(κtα−β)k

Γ((α− β)k + α)
RL(t) =

∞∑
k=L

(κtα−β)k

Γ((α− β)k + α)
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and

PL(t) =

L−1∑
k=1

(κtα−β)k

Γ((α− β)k + α− β)
RL(t) =

∞∑
k=L

(κtα−β)k

Γ((α− β)k + α− β)
.

It is easy to check that

Eα,β,κ(t) =
1

Γ(α− β)
+ PL(t) + RL(t).

We obtain the following inequalities for the || · ||′1−α,κ norm of integral Iα0+t
−βf :

|| (Iα0+t
−β)f ||′1−α,κ= sup

t∈[0,b]

| t1−αIα0+t
−βf(t) |

Eα,β,κ(t)
=

= sup
t∈[0,b]

| t1−αIα0+t
−βtα−1Eα,β,κ(t) t

1−αf(t)
Eα,β,κ(t)

|
Eα,β,κ(t)

≤

≤|| f ||′1−α,κ sup
t∈[0,b]

| t1−αIα0+t
−βtα−1Eα,β,κ(t) |
Eα,β,κ(t)

=

=|| f ||′1−α,κ sup
t∈[0,b]

t1−αtα−1
[
Eα−β,α(κtα−β)− 1

Γ(α)

]
κ · Eα,β,κ(t)

=

=
1

κ
· || f ||′1−α,κ sup

t∈[0,b]

PL(t) +RL(t)
1

Γ(α−β) + PL(t) + RL(t)
.

Thanks to assumption (α − β)(L + 1) ≥ γmin we can rewrite the above inequality as

follows:

|| (Iα0+t
−β)f ||′1−α,κ≤

1

κ
· || f ||′1−α,κ sup

t∈[0,b]

(
PL(t)

1
Γ(α−β) + PL(t)

+ 1

)
.

In the above formula norm || (Iα0+t
−β)f ||′1−α,κ is estimated with a coefficient given as a

supremum over interval [0, b] of certain rational function with positive denominator. As

all these functions are continuous in [0, b], the supremum is in fact a maximum - value of

function at certain tκ ∈ [0, b]:

|| (Iα0+t
−β)f ||′1−α,κ≤

1

κ
· || f ||′1−α,κ

(
PL(tκ)

1
Γ(α−β) + PL(tκ)

+ 1

)
.

Let us choose sequence (κm) such that

lim
m−→∞

κm =∞

and limit limm−→∞ κmt
α−β
κm (finite or infinite) exists. For this sequence of parameters we

obtain the following sequence of inequalities:

|| (Iα0+t
−β)f ||′1−α,κm≤

1

κm
· || f ||′1−α,κm

(
PL(tκm)

1
Γ(α−β) + PL(tκm)

+ 1

)
≤

≤ 1

κm
· || f ||′1−α,κm

(∑L−1
k=1

1
Γ(k(α−β)+α)

1
Γ(α−β)

+ 1

)
=
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=
AL
κm
· || f ||′1−α,κm .

In the above calculations we used the property of gamma Euler function, namely inequal-

ities

Γ(k(α− β) + α) ≥ Γ(k(α− β) + α− β)

are valid for k ≥ L, k ∈ N when (α− β)(L+ 1) ≥ γmin.

We shall omit the proof of parts (3) and (4) as it is analogous to the calculations presented

above in detail.

3. Main results. In this section we shall apply the norms and metrics constructed in

Definition 2.5 to prove the existence and uniqueness of the solution for certain fractional

differential equations. We begin by studying two one-term equations in the form of

tβDα
0+f(t) = Ψ(t, f(t)) (30)

tβ · cDα
0+f(t) = Ψ(t, f(t)) (31)

and we shall show that a unique solution for each of the above equations exists in the

respective function space and for arbitrary long interval [0, b]. Thanks to the composi-

tion rules from Property 2.3 we can rewrite (30,31) as the equivalent fractional integral

equations (c ∈ R arbitrary)

f(t) = Iα0+t
−βΨ(t, f(t)) + ctα−1 (32)

f(t) = Iα0+t
−βΨ(t, f(t)) + c. (33)

Finally, denoting the mapping on the right-hand side as Tφ0 in both cases, we obtain

equations (30,31) reformulated as the fixed point conditions on the C1−α[0, b] and C[0, b]

space respectively. Thus, we can solve equations (30,31) applying the Banach theorem on

a fixed point, provided the constructed mapping is a contraction on the corresponding

function space. The following propositions and corollaries describe the solution for the

considered equations.

Proposition 3.1. Let α ∈ (0, 1) and α−β > 0. If function Ψ ∈ C([0, b]×R) fulfills the

Lipschitz condition

| Ψ(t, x)−Ψ(t, y) |≤M · | x− y | ∀t ∈ [0, b] ∀x, y ∈ R, (34)

then each stationary function φ0 of the Dα
0+ operator generates unique solution

f ∈ C1−α[0, b] of equation

tβDα
0+f(t) = Ψ(t, f(t)).

Solution f is the limit of iterations of mapping Tφ0
:

f(t) = lim
k−→∞

(Tφ0
)kψ(t),

where function ψ ∈ C1−α[0, b] is arbitrary .

Proof. Let functions g, h ∈ C1−α[0, b] be arbitrary and β ≤ 0. Their images Tφ0
g and

Tφ0h look as follows

Tφ0
g(t) = Iα0+t

−βΨ(t, g(t)) + φ0(t)

Tφ0
h(t) = Iα0+t

−βΨ(t, h(t)) + φ0(t).
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We estimate the d′κ distance of the above images

d′κ(Tφ0
g, Tφ0

h) =|| Iα0+t
−β [Ψ(t, g(t))−Ψ(t, h(t))] ||1−α,κ≤

≤|| Iα0+t
−βM | g(t)− h(t) | ||1−α,κ≤

≤ Mb−β

κ
· || g − h ||1−α,κ=

Mb−β

κ
d′κ(g, h).

Thus mapping Tφ0
is a contraction in space < C1−α[0, b], d′κ >, provided κ is large enough.

Then, from the Banach theorem it follows that unique fixed point f ∈ C1−α[0, b] exists

f(t) = Tφ0f(t).

Function f is the solution of equation (30) and can be explicitly calculated as a limit of

iterations of mappping Tφ0
acting on arbitrary starting function ψ.

Next, we consider case β > 0, α − β > 0 and mapping Tφ0 acting on space C1−α[0, b]

endowed with the d′′κm metric. Let us note that for any function g ∈ C1−α[0, b] its image

Tφ0
g ∈ C1−α[0, b]. To prove this fact we apply the norm (22) equivalent to the standard

norm (2):

|| Tφ0
g ||′1−α,κm≤|| I

α
0+t
−βΨ(t, g(t)) ||′1−α,κm + || φ0 ||′1−α,κm≤

≤ AL
κm
|| Ψ(t, g(t)) ||′1−α,κm + || φ0 ||′1−α,κm<∞.

In the calculations we applied the fact (yielded by the Lipchitz condition) that composed

function Ψ(t, g(t)) ∈ C1−α[0, b].

Now, on space C1−α[0, b], the d′′κm distance of images Tφ0
g and Tφ0

h looks as follows

d′′κm(Tφ0
g, Tφ0

h) =|| Iα0+t
−β [Ψ(t, g(t))−Ψ(t, h(t))] ||′1−α,κm≤

≤|| Iα0+t
−βM | g(t)− h(t) | ||′1−α,κm≤

≤ M ·AL
κm

· || g − h ||′1−α,κm=
M ·AL
κm

d′′κm(g, h).

Similar to the previous case, we conclude that for κm large enough mapping Tφ0 is a

contraction on the < C1−α[0, b], d′′κm > space. Hence fixed point f exists thanks to the

Banach theorem and can be constructed in a way described in the above proposition.

Corollary 3.2. If assumptions of Proposition 3.1 are fulfilled, then equation

tβDα
0+f(t) = Ψ(t, f(t))

has unique solution f ∈ C1−α[0, b] fulfilling the initial condition

I1−α
0+ f(0) = d.

Solution f is the limit of iterations of mapping Tφ0 generated by stationary function

φ0 = dtα−1/Γ(α).

Proof. Due to the one-to-one correspondence between the stationary function and the

unique generated solution of equation (30), it is enough to show that function
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φ0 = dtα−1/Γ(α) generates solution f obeying initial condition I1−α
0+ f(0) = d. Solution

f fulfills equation (30) and the following equivalent integral equation

f(t) = Iα0+t
−βΨ(t, f(t)) +

dtα−1

Γ(α)
.

Integrating the above equation we arrive at the relation

I1−α
0+ f(t) = I1−α

0+ Iα0+t
−βΨ(t, f(t)) + I1−α

0+

dtα−1

Γ(α)
=

= I1
0+t

(−β+1)−1Ψ(t, f(t)) + d,

where we applied the integration formula [7]: Iγ0+t
δ−1 = tδ+γ−1Γ(δ)/Γ(γ + δ) valid for

Re(δ) > 0 and inequality −β + 1 > 1− α > 0 in case β > 0.

Now for t = 0 we obtain

I1−α
0+ f(0) = d

what ends the proof.

Similar results are valid for one-term equation with Caputo derivative (31). We quote

Proposition 3.3 and Corollary 3.4 without proof. They both are a straightforward corol-

lary of Properties 2.3 and 2.6 as well as of Proposition 2.7 (part (3) and (4)).

Proposition 3.3. Let α ∈ (0, 1) and α−β > 0. If function Ψ ∈ C([0, b]×R) fulfills the

Lipschitz condition (34), then each stationary function φ0 of the cDα
0+ operator generates

unique solution f ∈ C[0, b] of equation

tβ · cDα
0+f(t) = Ψ(t, f(t)).

Solution f is the limit of iterations of mapping Tφ0 :

f(t) = lim
k−→∞

(Tφ0
)kψ(t),

where function ψ ∈ C[0, b] is arbitrary.

Corollary 3.4. If assumptions of Proposition 3.3 are fulfilled, then equation

tβ · cDα
0+f(t) = Ψ(t, f(t))

has unique solution f ∈ C[0, b] fulfilling the initial condition

f(0) = d.

Solution f is the limit of iterations of mapping Tφ0
generated by stationary function

φ0 = d.

The results given in the above propositions and corollaries, valid for one-term frac-

tional differential equations can be extended to multi-term equations. In the present

paper we shall discuss such equations with basic Riemann-Liouville derivative of order

α ∈ (0, 1). Similar procedure can be applied to the analogous equations with Caputo

derivative and will be described in a subsequent paper.

We assume that nonlinear part of the fractional differential equation does not depend on
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derivative and consider in finite interval a class of equations in the form of:(tβDα
0+)m −

m−1∑
j=1

cj(t
βDα

0+)j

 f(t) = Ψ(t, f(t)), (35)

where α ∈ (0, 1), coefficients cj ∈ R j = 1, . . . ,m − 1, function Ψ ∈ C([0, b] × R) and

α− β > 0.

Using the composition rules from Property 2.3 we reformulate the above equation as

follows

(tβDα
0+)m

1−
m−1∑
j=1

cj(I
α
0+t
−β)m−j

 f(t)− (Iα0+t
−β)mΨ(t, f(t))

 = 0. (36)

Thus, we note that on the C1−α[0, b] space equation (35) is equivalent to the following

fractional integral equation1−
m−1∑
j=1

cj(I
α
0+t
−β)m−j

 f(t)− (Iα0+t
−β)mΨ(t, f(t)) = φ0(t), (37)

where function φ0 ∈ C1−α[0, b] belongs to the kernel of fractional operator (tβDα
0+)m:

(tβDα
0+)mφ0(t) = 0

and is given as (d̄j ∈ R j = 0, . . . ,m− 1)

φ0(t) =

m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1.

Now, we are able to rewrite equations (35,37) as the fixed point condition:

f(t) = Tφ0
f(t), (38)

where we denoted

Tφ0g(t) := Tmg(t) + φ0(t). (39)

The proposition below describes the properties of the integral part of the above mapping

on the space of continuous weigthed functions.

Lemma 3.5. Let α ∈ (0, 1) and α − β > 0. Mapping Tm defined as follows for g ∈
C1−α[0, b]

Tmg(t) :=

m−1∑
j=1

cj(I
α
0+t
−β)m−jg(t) + (Iα0+t

−β)mΨ(t, g(t)) (40)

is a contraction in the C1−α[0, b] space endowed with metric d′κ for case β ≤ 0 or d′′κm
for β > 0 respectively, provided parameters κ, κm are large enough and Ψ ∈ C([0, b]×R)

fulfills the Lipschitz condition (34).

The proof of the above lemma is a straightforward result of application of parts (1)

or (2) from Proposition 2.7, similar to the proof of Proposition 3.1 presented in detail.

Now, we are ready to describe the unique solution of equation (35) in space C1−α[0, b].
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Theorem 3.6. Let α ∈ (0, 1), α − β > 0 and Ψ ∈ C([0, b] × R) fulfill the Lipschitz

condition (34). Then fractional differential equation(tβDα
0+)m −

m−1∑
j=1

cj(t
βDα

0+)j

 f(t) = Ψ(t, f(t)) (41)

has unique solution f in the C1−α[0, b] space fulfilling the set of initial conditions:

I1−α
0+ (tβDα

0+)jf(t) |t=0= dj , (42)

where j = 0, . . . ,m− 1. This solution is a limit of the iterations of mapping Tφ0
(39,40)

generated by the stationary function in the form of

φ0(t) =

m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1 (43)

with coefficients d̄j given as follows

d̄0 = d0 (44)

d̄j =
(
dj −

∑j−1
l=0 cl+m−jdl

)∏j
k=1

Γ((α−β)k)
Γ((α−β)(k−1)+α) . (45)

Proof. Each stationary function φ0 ∈ C1−α[0, b] of the (tβDα
0+)m operator generates

a unique solution of equation (35). This follows from Lemma 3.5 which implies that

mapping Tφ0
is a contraction on the C1−α[0, b] space endowed with the corresponding

metric equivalent to (2). To end the proof we shall explicitly show the connection between

initial conditions (42) and stationary function (43). Function f solves simultaneously

equation (35) and its integral version

f(t) =

m−1∑
j=1

cj(I
α
0+t
−β)m−jf(t) + (Iα0+t

−β)mΨ(t, f(t)) +

m−1∑
j=0

d̄j
Γ((α− β)j + α)

t(α−β)j+α−1.

Integrating both sides of the above equality we obtain for l = 0, . . . ,m− 1

I1−α
0+ (tβDα

0+)lf(t) =

=

m−1∑
j=1

cjI
1−α
0+ (tβDα

0+)l(Iα0+t
−β)m−jf(t) + I1−α

0+ (tβDα
0+)l(Iα0+t

−β)mΨ(t, f(t))+

+

m−1∑
j=0

d̄j
Γ((α− β)j + α)

I1−α
0+ (tβDα

0+)lt(α−β)j+α−1.

Applying the composition rule from Property 2.3 and taking t = 0 we arrive at the

following relations

dl =

l−1∑
j=0

cj+m−ldj + d̄l

l∏
k=1

Γ((α− β)(k − 1) + α)

Γ((α− β)k)

which yield the explicit form of coefficients d̄l (where l = 0, . . . ,m− 1) from formula (44,

45)

d̄0 = d0
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d̄j =

(
dj −

j−1∑
l=0

cl+m−jdl

)
j∏

k=1

Γ((α− β)k)

Γ((α− β)(k − 1) + α)
.

The above solution for coefficients d̄j is unique and this ends the proof.

4. Final remarks. In the paper we proved existence-uniqueness results for the one-term

and multi-term nonlinear fractional differential equations dependent on the left-sided

derivative of given order α ∈ (0, 1). To this aim we extended Bielecki method of equivalent

norms [2] known from differential equations theory to fractional differential equations by

application of the two-parameter Mittag-Leffler functions in construction of new norms

(21-24). The developed method of proving the existence of the solutions yields in arbitrary

long interval [0, b] the unique solution, fulfilling the corresponding set of initial conditions.

Let us observe that the standard scaling (using a composed exponential function) is not

effective in the considered case as intermediate fractional integral equations (32,33,37)

have singular kernels. The new method of construction of the equivalent norms appears

to be useful in solving linear multi-term fractional differential equations with basic order

α ∈ (n− 1, n) and nonlinear multi-term fractional differential equations with Hadamard

derivative [11, 12]. The discussed results can be easily extended to the equations given on

space of vector functions. Another interesting field, where such method of proof should be

effective are sequential fractional diffrential equations in a sense given in [17, 18], where

no basic order of derivatives is assumed.
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